Statistical Mechanics for Neural
Networks and Artificial Intelligence

Chapter 7:
Introduction to Energy-Based Neural
Networks:
The Hopfield Network and the (Restricted)
Boltzmann Machine

Alianna J. Maren
Northwestern University School of Professional Studies
Master of Science in Data Studies

Draft: 2019-05-15

7.1 Introduction to Energy-Based Neural Net-
works

One of the most important aspects of advanced machine learning / deep
learning studies is the shift into a physics-based approach; specifically into
statistical mechanics. Statistical mechanics, combined with Bayesian proba-
bility theory and also with neural network methods, contribute to the central
themes of machine learning, as illustrated in the following Fig. 7.1.

Probability &
Information Theory

Statistical Mechanics

* a Priori and a Posteriori
Probabilities

* Mutual Infermation
Relative Entropy

* Partition Function
* Entropy & Enthalpy (Energy)
*Free Energy

¢+ Ising Model & MeanFie
Extension, ...

* Phase Transitions

Machine Learning
+ Kullback-Leibler Divergence
* Expectation Maximization
*Variational Methods ...

Neural Networks

* Hopfield Neural Network
* Boltzmann Machine

* Other Energy-Based Models
* Gradient Descent Learning

* Contrastive Divergence...
+ Bayesian Belief Networks

Figure 7.1: Machine learning algorithms are at the confluence of statistical
mechanics, probability and information theory, and neural networks.

One of the most interesting, distinctive, and even arcane aspects about
advanced neural networks and machine learning algorithms is that they use
two very different forms of probability-thinking. These two different methods,

coming from statstical mechanics and Bayesian probabilities (respectively)
are hugely different ways of thinking about the likelihood of whether or not
something will happen.

Statistical mechanics, a realm of theoretical physics, is used in neural
networks largely as an allegory; as a model created in one field that has
been (very usefully) applied to another. It’s almost like using physics as
story-telling. The notion that these methods could be successfully used is so
extreme that its almost shocking that these methods could find a new home
in neural networks and deep learning.

The notions of statistical mechanics are central to the learning methods
for restricted Boltzmann machines (RBMs). A restricted Boltzmann machine
learns using a very different underlying approach than that used by stochastic
gradient descent implementations (e.g., backpropagation). This means that
RBMs can have multi-layered architectures and learn to distinguish between
more complex patterns, overcoming the limitations of simple Multilayer
Perceptrons (MLPs), as we previously discussed.

Statistical mechanics deals with the probabilities of occurrence of small
units that can be distinguished from each other only by their energy states.
In contrast, Bayesian probabilities provide a remarkably different way of
thinking about the probabilities with which things can happen. Together,
these two probability-oriented methods provide the foundations for advanced
machine learning methods.

Now that we’ve identified the importance of both statistical mechanics
and Bayesian methods, we will restrict our attention (for this chapter and
the immediately-following ones) to statistical mechanics and its foundational
relationship with neural networks. We’ll pick up on the full confluence of
statistical mechanics and Bayesian methods later, when we address more
advanced topics.

The first time that the role of statistical mechanics became well-known in
neural networks was when John Hopfield presented his work in 1982 [1]. His
work drew on some similar lines of thinking developed by Little and colleagues
in 1974 [2].

This chapter presents some of the key concepts in statistical mechanics;
sufficient to understand the subject of some classic papers: Hopfield’s original
work (introducing what became known as the Hopfield network), and a few
key works on the Boltzmann machine, developed by Geoffrey Hinton and
colleagues.

7.2 Introduction to the Hopfield Neural Net-
work and the Boltzmann Machine

The Hopfield neural network and its immediates successor, the Boltzmann
machine (in both original and restricted forms) are instances of energy-based
neural networks. They each achieve their desired connection weight values by
minimizing an energy equation.

At first glance, the two networks do not seem to be structurally the same.
However, they have a great deal in common, as we’ll see shortly.

The following Fig. 7.2 illustrates both the Hopfield and the Boltzmann
machine neural networks, so that we can easily compare the structures. The
Hopfield neural network is shown on the left-hand-side, and the Boltzmann
machine (in two different configurations, but still the same network) is shown
in the center and right-hand-side graphs.

The Boltzmann Machine Neural Network

Linear form Layered form

Every node connects to every E Rearranged into layers:
other node (but not to itself) Everything STILL connects to the “hidden” nodes now
everything (but not to itself) — but are in the middle;
(a) one set of (“hidden”) nodes allowed “visible” nodes are on top
to find its own activationvalues and bottom
(b) (c)

Figure 7.2: Tllustration of the Hopfield and Boltzmann machine neural network
archtiectures; the Boltzmann machine is essentially a Hopfileld neural network
with certain connections removed.

To understand the restricted Boltzmann machine (RBM), which is central
to current deep learning theory, it helps to first understand the simple (non-
restricted) Boltzmann machine. And to understand the simple Boltzmann
machine, it helps us to first understand the Hopfield neural network. Thus,
we’ll briefly examine the Hopfield neural network.

The Hopfield neural network, as it came to be known, was immediately
interesting to the newly-forming neural networks community. Hopfield net-
works can be used for different tasks; one of the most interesting was as
an optimization method. However, its first and most fundamental applica-
tion was as an autoencoder. An autoencoder is a device that can remember
previously-stored patterns, if triggered to their recall by presentation of a
partial or noisy version of an original pattern.

Despite the Hopfield network’s interesting ability to reconstruct stored
patterns, it had a severe memory limitation. It could only learn a number of
patterns that was about 15% of the total number of nodes in the system. So
if, for example, a Hopfield network was created with 20 nodes (or neurons,
or units), then it could learn and retrieve only three distinct patterns. This
memory restriction caused many people to lose interest in this network.

Geoffrey Hinton, who (like John Hopfield) was also a physicist, came up
with a novel insight into how the structure of the Hopfield neural network
could be rearranged. This led to creation of the Boltzmann machine, and then
the restricted Boltzmann machine (RBM), which has been the cornerstone of
of deep learning.

So, in order to understand the restricted Boltzmann machine, we're going
to start at the beginning - with the equations and structure of the Hopfield
neural network. Once we understand that, it’s a straightforward, natural,
and intuitive step to understand Boltzmann machines - both in their original
and restricted forms. This then paves the way for us to understand and use
the wide range of methods involving energy-based systems in neural networks
and machine learning.

7.3 The Hopfield Neural Network - Energy
Equation and Structure

The Hopfield neural network, most often simply called the Hopfield network,
is a beautiful instance of how form and function perfectly reflect each
other. The function of this network is expressed in its energy equation. This
energy equation is perfectly mirrored in its form, or the structure of this
network.

We'll begin by looking at the energy equation, as presented by John
Hopfield in his classic 1982 paper, shown in the following Fig. 7.3.

Notice that there is just one energy equation here, given as Fqn. [7] in
the Hopfield 1982 paper. The second equation, Fqn. [8], is an energy update
equation; it describes how the energy is changed as the weight update rule is
applied. Thus, our focus is on that first Eqn. [7], as illustrated in Fig. 7.3.

Energy Equation Used by Hopfield (1982)

Studies of the collective behaviors of the model

The model has stable limit points. Consider the special case T}
= T}, and define

I
E=-=>YT,Vy,. (7
2 i%]
AE due to AV, is given by
AE = AV, > T,V; . (8]
Jri

Thus, the algorithm for altering V, causes E to be a monotoni-
cally decreasing function. State changes will continue until a
least (local) E is reached. This case is isomorphic with an Ising
model. T;; provides the role of the exchange coupling, and there
is also an external local field at each site. When T;; is symmetric
but has a random character (the spin glass) there are known to

be many (locally) stable states (29).

Figure 7.3: Extract from J. Hopfield (1982, April). Neural networks and
physical systems with emergent collective computational abilities, Proc. Natl.
Acad. Sci. U.S.A., 79, pp. 2554-2558.

The first of the two equations shown in Fig. 7.3 defines the overall energy
of the system, and the second shows what happens to the overall energy when
we flip any given node from 1 to 0, or vice versa. We will focus on the first
equation here, and defer the second equation to a later chapter.

Before we interpret the first equation (Eqn. [7]) in Hopfield’s paper, we're
going to briefly note where he says “This case is isomorphic with an Ising
model ...” This is a reference to statistical mechanics, which we’ll address
starting with the next chapter. An Ising model is a classic model in statistical
mechanics, and is very relevant to our work in energy-based neural networks.
We could say that the entirety of energy-based neural networks is built on a
foundation that uses the Ising model as a starting point. We’ll follow this

line of thought in the next few chapters. For now, we focus our attention on
the first equation, Egn. [7] in Hopfield’s 1982 paper, as shown in Fig. 7.3.
For readability, the equation in Fig. 7.3 is reproduced here as Eqn. 7.1.

1
E= —§ZZTi,jvivj. (7.1)
i#]

Our first step in understanding this equation is to interpret the terms V;,
V;, and T; ;. We refer to Hopfield’s original 1982 paper, where he states:

“The processing devices will be called neurons. Each neuron ¢ has two
states like those of McCulloch and Pitts (Author’s note: the reference citation
is updated here for the reader’s benefit, see [3]): V; = 0 (“not firing”) and
V; =1 (“firing at maximum rate”). When neuron i has a connection made to
it from j, the strength of connection is defined as 7;;. (Nonconnected neurons
have T;; = 0.)”

[Author’s Note: Minor notational difference - this book consistently puts
a comma between indices of elements that have more than one index, as is
done here with T; j. This is a common mathematical style, although neither
Hopfield nor Hinton use the comma separations.]

Let’s examine both the energy equation for the Hopfield neural network,
and the illustration of its structure. For ease in visualizing the Hopfield neural
network, the depiction of it from from Fig. 7.2 is presented here at larger
scale, as Fig. 7.4.

From Fig. 7.4, we see that every node is connected to each other node,
but not to itself.

In the Hopfield neural network, we have connections between each of the
different nodes. The notion of having some nodes be “visible” and other
nodes “hidden” is not present in the Hopfield neural network; the notion
of having “hidden” nodes was a innovation introduced a few years later by
Geoffrey Hinton, and was essential to the notion of the Boltzmann machine.
Essentially, all nodes in a Hopfield network are “visible.”

The energy equation for the Hopfield neural network addresses all possible
combinations of nodes in the network; this is why we see the double sumamtion
sign in Eqn. 7.1. This equation has the values for two different nodes in it; we
see both V; and V;. We know that there are no connections from any given
node back to itself, because that would be a connection between V; and V;;
for example node I connecting back to 1. The equation explicitly states that
we don’t have these connections, because we see ¢ # j as the subscript under

The Hopfield Neural Network

Every node connects to every
other node (but not to itself)

Figure 7.4: The Hopfield neural network archtiecture; expanded from Fig. 7.2.

the two summation signs. As we refer back to Fig. 7.4, we see this is the case;
each node connects to each other node, but there are no “loops” connecting
a node back to itself.

There’s just two more things that we can glean about the structure and
operation of the Hopfield neural network from its energy equation. First, we
see that there is a multiplying factor of —1/2 in front of the summations. Also,
from Hopfield’s original work, from which we saw an excerpt in Fig. 7.3, we
read “Consider the special case T; ; = T}, ...” This means that the connection
strength between any two nodes is the same, whether we read it from the
first node to the second or vice versa. For example, the connection strength
going from node 2 to node 3 is the same as the connection strength going
from node 3 back to node 2.

The way that the equation is set up, we count each direction of connections.
For example, we separately count the interactions between node 2 to node &
(T53V5V3) and between node 3 to node 2 (132V3V3). Because we've essentially
counted the same thing twice, we need to divide by two; this is why we have
the normalizing factor of 1/2 in front of the double summation.

The negative sign is introduced so that we can have positive values for

the connection parameter 7; ;. Remember, our algorithms are going to seek
a minimum in the energy equation. This is similar to how, when we did
stochastic gradient descent using the backpropagation algorithm, we were
seeking a minimum value. Our values for 7;; are not constrained to be
positive, but putting the negative sign in front of the double summation
energy term allows them to be positive more often than not, and the system
will still (likely) come to a minimum state as we apply our energy-minimization
algorithm.

Summing up what we’ve learned so far, we note that the Hopfield neural
network, which is the predecessor neural network for the Boltzmann machine,
has the following properties:

1. The network is constructed from a set of nodes, all of which are “visible,”

2. Each node connects to each other node, but not back to itself,

3. The nodes in this system are binary; meaning that they can each be in
one of two states; “on” or “off;” for both the Hopfield and the Boltzmann
machine networks, these values are (1,0),

4. The connections between nodes in this system are symmetric, so that
Tij = Tj4 and

5. The stable state of this network is governed by an energy equation, and
the training algorithm adapts the connection parameter 7; ; between
each pair of nodes (V; and Vj) in order to achieve a total minimum
value.

We're not going to address the training algorithm right now (the energy-
minimizing algorithm), as the purpose of this section was just to make a
connection between the formalism of the energy equation and the structure
of the Hopfield neural network. We’ve seen that, for the Hopfield neural
network, form equals function, in that the set of fully-connected nodes
(without self-connection) is illustrated in both Fig. 7.4 and Eqn. 7.1.

The important thing that we’ve done here has been to lay a foundation,
because our next step is to similarly understand the correspondence between
the energy equation for the Boltzmann machine and the structure and nature
of the Boltzmann machine neural network. That is the goal of the next
section.

7.4 The Boltzmann Machine - An Energy-
Based Neural Network

Eqn. 7.2, and the thinking behind it, is an evolution and a step forward
from the idea encapsulated in the Hopfield neural network [1], which we just
discussed in the previous section. Each of the first two terms involves a scalar
multiplying a node activation; v; or h;. The third term is the only one in
Eqn. 7.2 that has the energies of two different nodes involved; both v; and h;
are involved.

We begin by taking a look, in Fig. 7.5, at an equation used by Geoffrey
Hinton and colleagues to describe deep learning methods. The particular
source for this figure is from Hinton et al. in a 2012 paper for acoustic
modeling [4].

Energy Equation Used by Hinton et al. (2012)

B. An efficient learning procedure for RBMs
A joint configuration, (v, h) of the visible and hidden units of an RBM has an energy given by:

E(v,h) = - Z a;v; — Z bjhjfzr‘hj:r,j (6)

i€ visible j€hidden iJ

where v;, h; are the binary states of visible unit i and hidden unit j, a;,b; are their biases and w;; is the weight
between them. The network assigns a probability to every possible pair of a visible and a hidden vector wia this

energy function as in Eqn. (5) e e @

Figure 7.5: Extract from Hinton et al. (2012, November), Deep neural
networks for acoustic modeling in speech recognition: The shared views of
four research groups, IEEFE Signal Processing Magazine, 29, pp 82-97.

For readability, the equation shown in Figure 7.5 is reproduced as Eqn. 7.2.

E(U, h) = — Z a;V; — Z bjhj — Zvihjwm (72)

ievisible jehidden %,

Eqn. 7.2 describes the energy of a simple neural network as the linear
combination of three negative terms. These three terms tell us a lot about
the nature and structure of the corresponding neural network, which is called
the restricted Boltzmann machine.

The Boltzmann machine is derived from the Hopfield neural network, and
as we read the text in Fig. 7.5, see that Hinton et al. identify the terms in
the Boltzmann machine, stating that “ v;, h;, are the binary states of visible
unit v; and hidden unit o; ...”. In the Boltzmann machine, we have some
units that are “visible,” and others that are “hidden.” By way of comparison,
in the Hopfield neural network, all units are “visible.” Thus, when we write
an equation about the Boltzmann machine, we make a distinction between
visible and hidden units, with the terms v; and h;. When we write about the
Hopfield neural network, we only need to write about the visible nodes, and
so we just have the term v;. And actually, Hopfield uses the notation V;; it’s
the same thing.

Before we examine the restricted Boltzmann machine (RBM), we'll first
take a look at the general Boltzmann machine - and the notion of clamping,
which Hinton and colleagues have used in relation to the training process for
a Boltzmann machine (whether general or restricted).

7.4.1 “Clipping” and “Clamping” in the Hopfield and
the Boltzmann Machine Neural Networks

One of the terms that David Ackley, Geoffrey Hinton, and Terrence Sejnowski
introduced, in their 1985 paper presenting a learning algorithm for the early
Boltzmann machine [5], was the notion of clamping. This term has been used
by colleagues and devotees of Hinton ever since, and someone new to the field
often has to figure out what this means via inference and interpretation.

Let’s begin by looking at both the Hopfield network and the (general)
Boltzmann machine, as shown in Fig. 7.6. In a general Boltzmann machine,
just as with the Hopfield network, there are connections between all the
nodes.

Very succinctly, the notion of “clamping” is something that makes sense
with a Boltzmann machine neural network, but not with a Hopfield network.
The idea is that during training, for a Boltzmann machine, only the wvisible
nodes will have a pattern superimposed on them. This is called “clamping’
a pattern (onto the visible nodes). The training progresses by adjusting
connection weight strengths and also the on/off values of the hidden nodes,
for all the different patterns that are clamped onto the hidden nodes. This is
done many, many times, for all the different pattern instances.

As a historical note, Hopfield [1] used the term “clipping.

)

7

However, a

10

The Hopfield Neural Network The Boltzmann Machine Neural Network
“Clamped” “Not Clamped”

i i i ey

“Input” “Output”

All Nodes are “Clamped”

Figure 7.6: The Boltzmann machine.

Hopfield neural network is not trained in the same way as is a Boltzmann
machine, and the notion of “clipping” is not quite the same as “clamping.” In
Hopfield’s usage of the term, “clipping” means actually replacing the values
for T; ; with &1, in order to examine what would happen with highly nonlinear
connection weights.

We’ll pick up on the actual training methods for the restricted Boltzmann
machine in a later chapter, after we've looked at some of the statistical
mechanics underlying both the Hopfield and Boltzmann machine networks.

7.4.2 Comparing Interaction Energy Terms in the Hop-
field and Boltzmann Machine Neural Networks

To understand how the Boltzmann machine evolved from the Hopfield network,
let’s compare the third term in Eqn. 7.2 with the Hopfield energy equation.
This third term from Eqn. 7.2 is

E(v,h)erms = — Z vihjw ;.
i.j
In this equation, v; refers to the energy of the visible node 4, and h; refers
to the energy of the hidden node j. The third element of this term is w; j,
which refers to the connection weight between node 7 and node j.
For comparison, the Hopfield energy equation is

11

=32 Y
i#]

We might be tempted to say that these are the same equation, with only
some small differences in the notation. And really, these are two different ways
of expressing the same equation - with one very important difference in
the two forms. First, though, we identify the similarities.

The equations both have negative signs in front of them. As we previously
discussed, this lets us use positive values for (most of) the connection weights,
expressed in the Hinton equation as w; ; and in the Hopfield equation as 7; ;.

There is a factor of 1/2 in the Hopfield equation; this can be easily
subsumed into the connection weights themselves. (If nothing else were a
factor, we might say that the values for 7;; would be about one-half the
values for w ;.)

The summations are essentially the same; the double subscript indicates
that there are two summations going on, whether or not we show the capital
sigma summation sign twice or only once.

The real difference is a bit more subtle. Note that in the Hopfield
equation, the two nodes involved in each double summation step are repre-
sented as V;V;. These are not only the same kind of node; they’re drawn from
the same pool of nodes. This is why Hopfield had to be careful to specify
1 # j, so that the energy equation did not include a connection from a node
back to itself.

In contrast, the nodes in the Hinton et al. equation are of two
distinct groups; one represented as v; and the other as h;. These are the
same kind of node, but they are separated into two distinct pools, as shown
in the following Fig. 7.7.

The set of node connections for a Boltzmann machine is isomorphic with
that of a Hopfield network, as the notion of “visible” and “hidden” nodes has
to do with creating the input training patterns and with the actual learning
algorithm. That is, the structure (form) of the Boltzmann machine and
Hopfield neural networks are essentially the same; they differ in that for a
Boltzmann machine, the values for hidden nodes are not specified in the
training and testing process; rather, these values are learned over time. For
the Hopfield neural network, the values for all nodes are specified within the
training data patterns.

In contrast, a restricted Boltzmann machine (RBM) has a structure that

12

The Restricted Boltzmann Machine

Linear form Layered form

—— -

\ -

“Output”

“Hidden”

“Input”

(b)

Figure 7.7: The restricted Boltzmann machine (RBM); (a) linear form,
analagous to the Hopfield network depiction earlier, and (b) layered form,
analagous to a Multilayered Perceptron.

is isomorphic with a Multilayer Perceptron (MLP). This is worth further
exploration, which we’ll reserve until a later section.

For now, we’ll summarize by saying that the restricted Boltzmann machine
has much in common with the energy formulation for the Hopfield neural
network, but in practical application will function very similarly to a MLP.
However, it’s the energy-formulation for the RBM that allows it to be the
foundational method for deep learning. This energy-based foundation is
what has allowed certain challenges assocaited with simple gradient descent
methods to be overcome, making it possible to build highly-layered network
structures.

7.4.3 The Boltzmann Machine Energy Equation: The
Two Linear Terms

All of our attention, up until now, has been given to the nonlinear term in
the Boltzmann machine energy equation - the term that included both v; and
hj. We focused on using this term as a basis for comparing the Boltzmann
machine to its predecessor; the Hopfield neural network.

Now, we turn our attention to the remaining two terms in the Boltzmann

13

machine energy equation, both of which are linear in terms of a given node’s
activation. These two terms correspond, respectively, to the v; and ; nodes.
For convenience, this portion of the energy equation is reproduced below as

E(U,h>termsl,2:_ Z a;V; — Z bjhj'

ievisible jehidden

Our first observation is that the processes involving single nodes are
separated according to node type; this is really just a bit of a formality,
because the two remaining terms are similar. They each identify that a single
parameter (a; or b;) multiplies the “energy” of a single node (a wvisible or
hidden node, respectively).

Pragmatically, there are some implications here.

One important quick note, which we’ll develop further in the next section:
although we’re seeing different parameters multiplying the activations of the
visible and hidden nodes, respectively, these parameters are not the same as
the bias terms in a MLP. The bias terms act to “slide” the overall inputs
into a hidden or output node into the range that gives the greatest slope in
the output; that is, the biases learn to put the input values into a range near
ZEro.

The linear terms in the Boltzmann energy equation have an entirely
different role. They help drive the network towards a stronger negative value.
In other words, they help to minimize the energy of teh network.

7.4.4 A Little Thought-Experiment

Let’s pretend, for a moment, that the network has been trained, and so all
the values for a; and b; are now fully determined. Let’s also pretend that the
a; and b; are largely positive. This doesn’t have to be the case, but we’ll play
with this notion to get a sense of intution.

Suppose that a partial pattern is presented (“clamped”) onto the network,
so that a relatively large fraction of the visible nodes are defined. The network
will respond by using its trained values of w; ; to create activations across the
hidden nodes. These hidden nodes, now activated, will use their respective
connections to the remaining visible nodes to induce activations in those
nodes. At the end, all the nodes are activated (or not) in a pattern that has
been “learned” in response to repeated presentation of the full set of visible
node activations during training.

14

During the training process, the network will learn valeus for a; and b,
that reduce the overall energy value, regardless of which pattern is presented
(“clamped on”) to the visible nodes. (Or, when in actual operation, partially
clamped - so that the remaining visible nodes can take on values resulting
from the network’s processes using the values of the clamped visible nodes.)

The network can also learn which hidden nodes should become active.

If, in our imaginary scenario, all the b; values are positive, the it would
reduce the overall energy of the network to have all of the hidden nodes h; to
be “on,” for each pattern presented by a set of v;.

However, if all of the h; are “on,” that means that all of the possible
learned features are active for each pattern presented by a given set of visible
nodes.

Obviously, this isn’t what we want. The whole point of training the
network and having the hidden nodes to learn features (specific combinations
of active visible nodes) is that certain features distinguish certain specific
kinds of visible node patterns. Thus, the last thing that we want is to have all
the hidden nodes active; we want just the right ones active at a given time.

Carrying our gedanken-ezpereiment (German for “thought-experiment”)
just a little further, suppose that we have a relatively sparse pattern presented
in the v;; that is, relatively few v; nodes activated.

Getting a hidden node activated depends on having active v; nodes,
because the network is trained with the energy term v;hjw; ;. If the visible
node v; activation is zero, then the energy term connecting that visible node
to the hidden node is also zero, and there is no build-up for the connection
Welght Wi j-

In short, a sparse visible pattern will also induce a sparse activation in
the hidden nodes. This means that the total energy is likely to be higher,
not lower, because we're playing with the imaginary scenario where the
multiplying parameters a; or b; are all positive, and there is a negative sign
in front of each of them in the energy equation.

This means that the sparse patterns will not be the dominant force in
driving the system to the lowest energy state possible. Instead, the more
activation-rich patterns will hold stronger sway. In the more activation-rich
patterns, the linear term involving the v; will be at a stronger negative value
(minimizing the network’s energy). Also, the term involving the h; will also
have a stronger negative value, because more active visible nodes will mean
more pattern complexity, which will mean more features to which the hidden
nodes can respond, so there will be more active hidden nodes.

15

Further, when presented with an activation-rich visible pattern, the non-
linear term (v;h;w; ;) will also reach a strong negative value, since there will
be many combinations of visible and hidden nodes where both of the nodes
v; and h; are active at the same time. With positive values for w; ; for those
pairwise node combinations, this will also yield a strong negative contribution
to the energy.

We are not necesarily confining the parameters a;, b;, and w; ; to exclusively
positive values. As a result of the training, they can take on negative values
as well. We've worked with positive values just to conduct some mental
envisionings of different scenarios, and to test how we understand how these
parameters influence the overall energy.

The actual training for the (restricted) Boltzmann machine is done using
the contrastive divergence algorithm, which is an iterative two-part training
process. We'll study this algorithm in a later chapter, after we've looked at
the statistical mechanics underpinnings of the energy formulation.

7.5 Relationship Between the Boltzmann Ma-
chine and the Multilayer Perceptron

For those who have become accustomed to thinking about neural networks
using the structure of a Multilayer Perceptron (MLP) as their reference point,
the notion of an energy-based network and the concepts behind it may at
first seem not only unusual, but also a bit jarring.

The notion of separating a network, formally, into only two distinct groups
of nodes (visible and hidden) comes via the evolution of energy-based neural
networks. In contrast, when we think about a Multilayer Perceptron, we
necessarily have to think about at least three different sets of nodes; input,
hidden, and output.

In its most essential form, a Boltzmann machine is an autoencoder. Corre-
spondingly, in its most essential form, an MLP is a classifier.

We can make a Boltzmann machine function as a classifier, of course, and
conversely, we can also make a MLP function as an autoencoder. However,
the essential nature of these two different networks means that we think of
them in different ways. They are not really analogues.

This shows up most strongly when we think about how we can use the
Boltzmann machine. We can force it to reconstruct or complete a pattern

16

that has been presented to it during training. (Or, if it is a new pattern, it
will construct something that is the closest approximation from its training
data, even if that requires merging the patterns inherent in several different
training instances.)

As far as the Boltzmann machine is concerned, it makes no difference
if the partically-completed pattern that we “clamp” onto the network puts
values into the output layer instead of the input layer, or into a mixture of
both. In contrast, the only place where we enter a pattern (completed or not)
into an MLP is in the input layer.

The reason for this difference is that in the Boltzmann machine, the
notion of “input” and “output” layers are an artifact; they’re something of
our imagining. The only real distinction that the Boltzmann machine makes
is between wistble and hidden, and the wvisible nodes are separated into “input”
and “output” layers just in terms of how we’re drawing the network; not in
any real functional sense.

This has a profound impact on how the network performs, and is inherent
in how deep learning has its roots.

In concluding this chapter, we’ll take a deeper look at the differences
between the Boltzmann machine and a typical MLP.

7.5.1 The Microstructure of Energy-Based Neural Net-
works

In a classic MLP, the activation of a hidden or output node is found by
applying a transfer function to the summed inputs to that respective node.
The transfer function is typically one that has is smoothly differentiable.
(We're ignoriing, for now, non-smoothly differentiable transfer functions such
as ReLUs.) As we recall from a previous chapter, the transfer function serves
multiple purpposes. It scales the output of a given node from what could
potentially range from minus to posibive infinty, to a range between (and 1.
(Or between -1 and 1, depending on the function of choice.) The important
point for us to keep in mind, as we do our comparision between MLP and
a Boltzmann machine architectures, is that the output of both hidden and
output nodes of the MLP can take on continuous values between specific
ranges.

In contrast, the values of both the visible and hidden nodes in a Boltzmann
machine are either 0 and 1.

17

Because we know that in a Multilayer Perceptron (MLP) architecture, we
have bias terms multiplying the activation of the hidden and output nodes,
we can make a correspondence. In a MLP, the a; and b; parameters function
as bias scalars, or multiplying factors.

In a Boltzmann machine, both “input” and “output” nodes are wvisible;
that is, they belong to the pool of v; nodes. If we wanted to, we could make
the bias values for the input nodes to be set equal to one; this would make
the Boltzmann machine look a bit more like an MLP. However, the formalism
expressed in Eqn. 7.2 makes it clear that we have the flexiblity to do otherwise.

7.5.2 The Impact of the Training Method on the Node
Microstructures

The key differentiating factor between Boltzmann machine-style neural net-
works and the class of neural networks that are trained using a stochastic
gradient descent method (e.g., a Multilayer Percptron, using a backpropa-
gation implementation for gradient descent training) is that the individual
nodes or neurons in a Boltzmann machine network are binary; they each have
values of 0 or 1. In contrast, the nodes in an MLP must necessarily take on a
continuum of values, with outputs that are bounded by 0 or 1 (or, depending
on the transfer function used, between -1 or 1).

This is hugely related to how the training algorithms work in the two
different cases. With a stochastic gradient descent, a key feature is that we
need to identify the gradient of the node’s activation, as a function of summed
and weighted inputs. With a Boltzmann machine, we don’t need a gradient;
in fact, that would make our training algorithm more cumbersome.

We may come across a figure depicting the probabilistic activation of a
node in a Boltzmann machine network. (Author’s Note: This figure will be
inserted at a later date.)

This distinction is, of course, a broad and sweeping generalization. There
are exceptions to this, as there are to every rule. However, this distinction
broadly separates these two fundamentally different neural network classes.

18

7.5.3 The Mesostructure of Energy-Based Neural Net-
works

The structure of the network described by Eqn. 7.2 may look identical to that
of the Multilayer Perceptron (MLP), discussed in previous chapters. There is,
however, a key difference. In a traditional MLP, the notion of various “layers”
in the networks is an essential part of how we think about the network; both
its training and its performance.

By contrast, in the networks described by Hinton and by others doing
energy-based neural networks and deep learning, the emphasis is not so much
on the structuring into layers, and more on whether a given node is “visible”
or “hidden.” By way of comparison to an MLP architecture, we would say
that the input and output nodes of a network are ‘’visible,” and of course
the internal, hidden layer nodes are the ones that are “hidden.” This lets
us separately describe the energies for the visible (input and output) nodes
versus the energies of the hidden ones.

When we train a Boltzmann machine, we superimpose a set of activa-
tions on both the input and output layers. (This is what Hinton means by
“clamping.”) The training algorithm causes the weights to take on appropriate
values, and the hidden nodes to also learn whether to be “on” or “off” in
response to a specific input / output training pattern. However, we can regard
the combined set of input/output training data sets as being - essentially -
all one pattern.

In contrast, in an MLP, we think of the input/output training data as two
sets of patterns; an input training data set and its associated output pattern.

Of course, once these two networks are trained, they functionally operate
in a very similar manner. Also, their performance is about the same.

7.6 Summary of Essential Features: The Hop-
field and (Restricted) Boltzmann Machine
Neural Networks

In this chapter, we’ve introduced the Boltzmann machine, in both its general
and restricted forms. We’ve also shown how the Boltzmann machine is both

an logical and intuitive move beyond its predecessor; the Hopfield neural
network. The restricted Boltzmann machine (RBM) is architecturally very

19

similar to a Multilayer Perceptron (MLP), and can function in a very similar
manner, with aprpoximately the same results.

As each of these networks is trained, both the RBM and the MLP use their
respective hidden layers to represent patterns in the input data. However, to
be more precise, in the RBM, the hidden nodes learn features that represent
patterns across the combination of “input” and “output” nodes, which together
comprise the visible nodes in the network. The notion of dividing the network
into layers (input, hidden, and output) is an artifact. In essence, for the RBM,
there are only the two categores of visible and hidden nodes.

In contrast, in an MLP, the notion of “layers” is essential to not just the
architecture, but to the learning in the network.The training process is driven
between the difference (“summed squared error”) between the actual values
and the desired values in the output nodes. This difference is used to guide
weight adjustments sequentially; first to the hidden-to-output connection
weights, and then to the input-to-hidden connection weights.

In order to train an MLP, we need to know in advance the desired output
values; we must have a set of training data with pre-defined desired outputs
corresponding to specific input patterns.

In contrast, we have a bit more ambiguity in defining how a Boltzmann
machine is trained, because we don’t necessarily have to have those pre-
defined output classes in as rigidly-defined a manner. Thus, the training
algorithm for the Boltzmann machine can concentrate more on extracting
features in the imposed traiining patterns that are inherent to those patterns,
leaving the ultimate “classification” to be more of a discovery, and less of a
superimposition. This has had a profound impact in making deep learning
possible.

20

Bibliography

[1] J. Hopfield, “Neural networks and physical systems with emergent col-
lective computational abilities,” Proc. Natl. Acad. Sci. U.S.A., vol. 79,
p. 2554 2558, April 1982.

[2] W. Little, “The existence of persistent states in the brain,” Math Biosci.,
vol. 19, pp. 101-120, February 1974.

[3] W. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in
nervous activity,” Bull. Math. Biophys., vol. 5, pp. 115-133, 1943.

[4] G. Hinton, L. Deng, D. Yu, G. Dah, A. R. Mohamed, N. Jaitly, A. Senior,
V. Vanhoucke, P. Nguyen, T. Sainath, and B. Kingsbury, “Deep neural
networks for acoustic modeling in speech recognition: The shared views
of four research groups,” IEEFE Signal Proc. Mag., vol. 29, pp. 82-97,
November 2012.

[5] D. Ackley, G. Hinton, and T. Sejnowski, “A learning algorithm for boltz-
mann machines,” Cognitive Science, vol. 9, pp. 147-169, 1985.

21

