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7.1 Introduction to Energy-Based Neural Net-

works

One of the most important aspects of advanced machine learning / deep
learning studies is the shift into a physics-based approach; specifically into
statistical mechanics. Statistical mechanics, combined with Bayesian proba-
bility theory and also with neural network methods, contribute to the central
themes of machine learning, as illustrated in the following Fig. 7.1.

Figure 7.1: Machine learning algorithms are at the confluence of statistical
mechanics, probability and information theory, and neural networks.

One of the most interesting, distinctive, and even arcane aspects about
advanced neural networks and machine learning algorithms is that they use
two very different forms of probability-thinking. These two different methods,
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coming from statstical mechanics and Bayesian probabilities (respectively)
are hugely different ways of thinking about the likelihood of whether or not
something will happen.

Statistical mechanics, a realm of theoretical physics, is used in neural
networks largely as an allegory; as a model created in one field that has
been (very usefully) applied to another. It’s almost like using physics as
story-telling. The notion that these methods could be successfully used is so
extreme that its almost shocking that these methods could find a new home
in neural networks and deep learning.

The notions of statistical mechanics are central to the learning methods
for restricted Boltzmann machines (RBMs). A restricted Boltzmann machine
learns using a very different underlying approach than that used by stochastic
gradient descent implementations (e.g., backpropagation). This means that
RBMs can have multi-layered architectures and learn to distinguish between
more complex patterns, overcoming the limitations of simple Multilayer
Perceptrons (MLPs), as we previously discussed.

Statistical mechanics deals with the probabilities of occurrence of small
units that can be distinguished from each other only by their energy states.
In contrast, Bayesian probabilities provide a remarkably different way of
thinking about the probabilities with which things can happen. Together,
these two probability-oriented methods provide the foundations for advanced
machine learning methods.

Now that we’ve identified the importance of both statistical mechanics
and Bayesian methods, we will restrict our attention (for this chapter and
the immediately-following ones) to statistical mechanics and its foundational
relationship with neural networks. We’ll pick up on the full confluence of
statistical mechanics and Bayesian methods later, when we address more
advanced topics.

The first time that the role of statistical mechanics became well-known in
neural networks was when John Hopfield presented his work in 1982 [1]. His
work drew on some similar lines of thinking developed by Little and colleagues
in 1974 [2].

This chapter presents some of the key concepts in statistical mechanics;
sufficient to understand the subject of some classic papers: Hopfield’s original
work (introducing what became known as the Hopfield network), and a few
key works on the Boltzmann machine, developed by Geoffrey Hinton and
colleagues.
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7.2 Introduction to the Hopfield Neural Net-

work and the Boltzmann Machine

The Hopfield neural network and its immediates successor, the Boltzmann
machine (in both original and restricted forms) are instances of energy-based
neural networks. They each achieve their desired connection weight values by
minimizing an energy equation.

At first glance, the two networks do not seem to be structurally the same.
However, they have a great deal in common, as we’ll see shortly.

The following Fig. 7.2 illustrates both the Hopfield and the Boltzmann
machine neural networks, so that we can easily compare the structures. The
Hopfield neural network is shown on the left-hand-side, and the Boltzmann
machine (in two different configurations, but still the same network) is shown
in the center and right-hand-side graphs.

Figure 7.2: Illustration of the Hopfield and Boltzmann machine neural network
archtiectures; the Boltzmann machine is essentially a Hopfileld neural network
with certain connections removed.

To understand the restricted Boltzmann machine (RBM), which is central
to current deep learning theory, it helps to first understand the simple (non-
restricted) Boltzmann machine. And to understand the simple Boltzmann
machine, it helps us to first understand the Hopfield neural network. Thus,
we’ll briefly examine the Hopfield neural network.
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The Hopfield neural network, as it came to be known, was immediately
interesting to the newly-forming neural networks community. Hopfield net-
works can be used for different tasks; one of the most interesting was as
an optimization method. However, its first and most fundamental applica-
tion was as an autoencoder. An autoencoder is a device that can remember
previously-stored patterns, if triggered to their recall by presentation of a
partial or noisy version of an original pattern.

Despite the Hopfield network’s interesting ability to reconstruct stored
patterns, it had a severe memory limitation. It could only learn a number of
patterns that was about 15% of the total number of nodes in the system. So
if, for example, a Hopfield network was created with 20 nodes (or neurons,
or units), then it could learn and retrieve only three distinct patterns. This
memory restriction caused many people to lose interest in this network.

Geoffrey Hinton, who (like John Hopfield) was also a physicist, came up
with a novel insight into how the structure of the Hopfield neural network
could be rearranged. This led to creation of the Boltzmann machine, and then
the restricted Boltzmann machine (RBM), which has been the cornerstone of
of deep learning.

So, in order to understand the restricted Boltzmann machine, we’re going
to start at the beginning - with the equations and structure of the Hopfield
neural network. Once we understand that, it’s a straightforward, natural,
and intuitive step to understand Boltzmann machines - both in their original
and restricted forms. This then paves the way for us to understand and use
the wide range of methods involving energy-based systems in neural networks
and machine learning.

7.3 The Hopfield Neural Network - Energy

Equation and Structure

The Hopfield neural network, most often simply called the Hopfield network,
is a beautiful instance of how form and function perfectly reflect each
other. The function of this network is expressed in its energy equation. This
energy equation is perfectly mirrored in its form, or the structure of this
network.

We’ll begin by looking at the energy equation, as presented by John
Hopfield in his classic 1982 paper, shown in the following Fig. 7.3.
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Notice that there is just one energy equation here, given as Eqn. [7] in
the Hopfield 1982 paper. The second equation, Eqn. [8], is an energy update
equation; it describes how the energy is changed as the weight update rule is
applied. Thus, our focus is on that first Eqn. [7], as illustrated in Fig. 7.3.

Figure 7.3: Extract from J. Hopfield (1982, April). Neural networks and
physical systems with emergent collective computational abilities, Proc. Natl.
Acad. Sci. U.S.A., 79, pp. 2554-2558.

The first of the two equations shown in Fig. 7.3 defines the overall energy
of the system, and the second shows what happens to the overall energy when
we flip any given node from 1 to 0, or vice versa. We will focus on the first
equation here, and defer the second equation to a later chapter.

Before we interpret the first equation (Eqn. [7]) in Hopfield’s paper, we’re
going to briefly note where he says “This case is isomorphic with an Ising
model ...” This is a reference to statistical mechanics, which we’ll address
starting with the next chapter. An Ising model is a classic model in statistical
mechanics, and is very relevant to our work in energy-based neural networks.
We could say that the entirety of energy-based neural networks is built on a
foundation that uses the Ising model as a starting point. We’ll follow this
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line of thought in the next few chapters. For now, we focus our attention on
the first equation, Eqn. [7] in Hopfield’s 1982 paper, as shown in Fig. 7.3.

For readability, the equation in Fig. 7.3 is reproduced here as Eqn. 7.1.

E = −1

2

∑∑
i 6=j

Ti,jViVj. (7.1)

Our first step in understanding this equation is to interpret the terms Vi,
Vj, and Tij.We refer to Hopfield’s original 1982 paper, where he states:

“The processing devices will be called neurons. Each neuron i has two
states like those of McCulloch and Pitts (Author’s note: the reference citation
is updated here for the reader’s benefit, see [3]): Vi = 0 (“not firing”) and
Vi = 1 (“firing at maximum rate”). When neuron i has a connection made to
it from j, the strength of connection is defined as Tij . (Nonconnected neurons
have Tij ≡ 0.)”

Let’s examine both the energy equation for the Hopfield neural network,
and the illustration of its structure. For ease in visualizing the Hopfield neural
network, the depiction of it from from Fig. 7.2 is presented here at larger
scale, as Fig. 7.4.

Figure 7.4: The Hopfield neural network archtiecture; expanded from Fig. 7.2.
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From Fig. 7.4, we see that every node is connected to each other node,
but not to itself.

In the Hopfield neural network, we have connections between each of the
different nodes. The notion of having some nodes be “visible” and other
nodes “hidden” is not present in the Hopfield neural network; the notion
of having “hidden” nodes was a innovation introduced a few years later by
Geoffrey Hinton, and was essential to the notion of the Boltzmann machine.
Essentially, all nodes in a Hopfield network are “visible.”

The energy equation for the Hopfield neural network addresses all possible
combinations of nodes in the network; this is why we see the double sumamtion
sign in Eqn. 7.1. This equation has the values for two different nodes in it; we
see both Vi and Vj. We know that there are no connections from any given
node back to itself, because that would be a connection between Vi and Vi;
for example node 1 connecting back to 1. The equation explicitly states that
we don’t have these connections, because we see i 6= j as the subscript under
the two summation signs. As we refer back to Fig. 7.4, we see this is the case;
each node connects to each other node, but there are no “loops” connecting
a node back to itself.

There’s just two more things that we can glean about the structure and
operation of the Hopfield neural network from its energy equation. First, we
see that there is a multiplying factor of −1/2 in front of the summations. Also,
from Hopfield’s original work, from which we saw an excerpt in Fig. 7.3, we
read “Consider the special case Ti,j = Tj,i ...” This means that the connection
strength between any two nodes is the same, whether we read it from the
first node to the second or vice versa. For example, the connection strength
going from node 2 to node 3 is the same as the connection strength going
from node 3 back to node 2.

The way that the equation is set up, we count each direction of connections.
For example, we separately count the interactions between node 2 to node 3
(T2,3V2V3) and between node 3 to node 2 (T3,2V3V2). Because we’ve essentially
counted the same thing twice, we need to divide by two; this is why we have
the normalizing factor of 1/2 in front of the double summation.

The negative sign is introduced so that we can have positive values for
the connection parameter Ti,j. Remember, our algorithms are going to seek
a minimum in the energy equation. This is similar to how, when we did
stochastic gradient descent using the backpropagation algorithm, we were
seeking a minimum value. Our values for Ti,j are not constrained to be
positive, but putting the negative sign in front of the double summation
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energy term allows them to be positive more often than not, and the system
will still (likely) come to a minimum state as we apply our energy-minimization
algorithm.

Summing up what we’ve learned so far, we note that the Hopfield neural
network, which is the predecessor neural network for the Boltzmann machine,
has the following properties:

1. The network is constructed from a set of nodes, all of which are “visible,”

2. Each node connects to each other node, but not back to itself,

3. The nodes in this system are binary ; meaning that they can each be in
one of two states; “on” or “off;” for both the Hopfield and the Boltzmann
machine networks, these values are (1, 0),

4. The connections between nodes in this system are symmetric, so that
Ti,j = Tj,i, and

5. The stable state of this network is governed by an energy equation, and
the training algorithm adapts the connection parameter Ti,j between
each pair of nodes (Vi and Vj) in order to achieve a total minimum
value.

We’re not going to address the training algorithm right now (the energy-
minimizing algorithm), as the purpose of this section was just to make a
connection between the formalism of the energy equation and the structure
of the Hopfield neural network. We’ve seen that, for the Hopfield neural
network, form equals function , in that the set of fully-connected nodes
(without self-connection) is illustrated in both Fig. 7.4 and Eqn. 7.1.

The important thing that we’ve done here has been to lay a foundation,
because our next step is to similarly understand the correspondence between
the energy equation for the Boltzmann machine and the structure and nature
of the Boltzmann machine neural network. That is the goal of the next
section.
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