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Abstract We - report on a prototype
implementation and preliminary studies of a
new class of computational engine. This engine
introduces statistical mechanical considerations
into a simple neural network design, affording
greater stability in the pattern classes generated
in response to different input stimulus. It will
exhibit continuous processing, whether or not
input is given, which makes it distinct from
typical neural networks. The current
instantiation of the "engine" consists of two 1-D
layers, with feedforward connections between the
"input" Iayer and the "computational" layer. The
computational layer achieves its total
configuration via response to many factors,
including input activations obtained from the
input layer, and minimization of a Gibbs Free
Energy function. Minimizing the Gibbs Free
Energy involves changing the bistate activation
of some domains (processing elements) to create
an ensemble configuration which balances
clustering of like domains with the distribution
of different local patterns of domain activation.
The clustering stabilizes pattern formation in
the computational layer.

We use a Hamming distance metric to assess
the difference between intra-class patterns and
inter-class patterns. We find that the inter-class
distance between prototype patterns produced in

response to different inputs is an order of
magnitude greater than the intra-class distance
in the computational layer patterns produced in
response to a given input.

I. INTRODUCTION

To meet the needs of next-generation
intelligent systems, we are developing a new
class of computational engine which will exhibit
properties different from those of classical neural
networks [1]. In particular, this new class of
engine will be able to operate continuously,
regardless of the presence of an input pattern.
The system will not only be able to perform
pattern recall, as is true with heteroassociative
neural networks, but will also be able to perform
free association by activating different stored,
stable patterns when the input is turned off. We
report here on preliminary results in
characterizing the properties of a prototype 1-D
implementation of this computational engine,
emphasizing its pattern storage and recall
abilities.

In current form, the prototype computational
engine consists of two layers; an input layer and
a computational layer, as shown in Fig. 1. Each
of these layers is composed of bistate neural
"domains," the basic processing elements of this
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engine. (We describe our processing elements as
"domains," since in later implementations of our
system we will give these elements processing
abilities which are more complex than those
found in simple artificial neurons, and which can
be described by the statistical mechanics of
ensembles of bistate units.) Each domain in the
"input layer" sends weighted values of its bistate
(0,1) activation to each domain in the
‘computational layer." If the sum of these inputs
surpasses a threshold, the domain can become
"fixed" in the appropriate on or off state as long
as the input pattern remains active.

Computational layer domains will receive
activations from the input layer, from each
other, and from a simulated Gaussian noise
source. These domains will also undergo
temporal activation decay. The distribution of

"active" domains in the "computational layer" of

a bilayer hetero-associative network is initially
determined by the above factors and is further
driven by continuous minimization of an
ensemble Gibbs Free Energy function. This
combination of processes will afford the engine
the ability to move from one stable state to
another in a "free association manner,” without
freezing into a single configuration.

Computational Layer

B OREmOCE ]
[JEC].
Input Layer
Figure 1: System Architecture for the

Computational Engine.

Use of Gibbs Free Energy (GFE)
minimization for this engine is analogous to
using a Lyapunov function. The GFE is a
function defined using statistical mechanics
considerations, and by treating the ehsemble of
domains as a spin. glass, which is a common
modeling approach in statistical physics. The
GFE is not a time-dependent function nor is it
a potential energy function in the sense that
most Lyapunov functions are. Adopting the
language of physicists, we say that a real physical
process will move towards equilibrium, which is
where the GFE is at a minimum. Thus, during
real physical processes, the laws of nature work
so as to minimize the GFE, driving the system
towards equilibrium. We adopt this as the basis
for our computational system, and establish an
algorithm which changes the configuration of
active domains in the computational layer so as
to minimize the GFE for the ensemble of
domains.

The Gibbs Free Energy for a system
represents the interaction of two competing,
driving forces in nature. The first is the
tendency of objects to go to their lowest energy
‘state. We describe the energy of the individual
elements and their interactions as the "enthalpy”
of a system. The competing tendency, called
“entropy,” is that when a system is composed of
elements which can be in more than one state,
there is a tendency to distribute the elements
evenly among all the possible states. (Our
system uses bistate elements). This works
against the force driving the system to the lowest
energy state. The basic formalism for the Gibbs
Free Energy is

G =H-TS, o)

where G is the Gibbs Free Energy, H is the
enthalpy, T is the temperature, and S is the
entropy. We can express (1) in reduced form, by
dividing through by temperature, Boltzmann’s
constant (k), and the total number of units in the
system (N). (Both the latter terms are involved
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in the expression for entropy). This yields
Q = E - S/(]\rk), (2')

where G and H are reduced Gibbs Free Energy
and enthalpy, respectively.

The Gibbs Free Energy function we use has a
simple interaction enthalpy between neighboring
domains, and a complex entropy term involving
"cluster variation" variables [2]. This formulation
for the entropy term is unusual; it takes into
account the distribution of domains into local
spatial relationships relative to each other. The
variables used to describe these relationships are
the nearest-neighbor configurations variables, y;,
and the "triples", z, both shown in Fig. 2.

G = G/NET = 2Pe(-z,+2,+7,-2,)
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The first term on the right hand side is the
interaction enthalpy, where the z are cluster
variables for different "triples" of combinations
of on/off elements. The second two terms give
the entropy, where Lf(x) = xIn(x)-x. The last
two terms are Lagrangian multipliers, and the y;
are nearest-neighbor pair cluster variables.

The engine operates by passing weighted input
from the input layer to the computational layer.
High or low total activations reaching a given
domain can "fix" the domain in an on or off
state; the activations of the remaining domains
are adjusted to minimize Gibbs Free Energy for
the ensemble. This is done by randomly
selecting an ‘“unfixed" domain in the

computational layer, reversing its state, and
recalculating the GFE. If the GFE is minimized
as a result of the change, the new configuration
is kept. If it is increased, the domain state is
reversed to its previous state, and a new domain
is selected for change.

We increase the system’s sensitivity to
different input patterns by briefly training the
connection weights between the input and the
computational layer. These weights are inttially
randomly distributed in the intervaill-1, 1]. We
use a modified Hebbian rule to increase (or
decrease) their values to increase (or decrease)
the activation of each of the computational layer
nodes in the direction in which the activation is
already tending (positive or negative,
respectively).
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Figure 2: The Fraction Variables for Cluster
Variation Theory.
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H. EXPERIMENTS

We have performed two sets of experiments
on this prototype network. The first set was
performed on the computational layer itself,
before the input layer was added to the system.
The second set of experiments, more pertinent to
the pattern recognition abilities of the engine,
was performed on the system containing both the
input and the computational layers.

For the first set of experiments, we have
investigated how well the distribution of cluster
variables y; and z; that resulted from minimizing
the GFE of the computational layer approached
the analytically predicted results. We obtained
the simulation results with computational layers
of 200 or 400 domains (in separate experiments).
We established an initial random distribution of
activations in the domains. For interaction
enthalpies ranging from 0 to 1 in steps of 0.1,
and from 1 to 3 in steps of 0.5, we determined
the actual fractional values for the different
cluster variables. We compared this with the
analytically predicted results obtained by taking
the derivative of (3) with respect to each of the
z; and setting each of the six equations equal to
Zero.

This set of six nonlinear equations is solved
analytically by invoking distribution constraints
(ZB8y; = 1; Zv;z; = 1) and setting the condition
that the domains be partitioned equally across
the two states; x; = x, = 1). The method is
similar to that used in [2]. We found the cluster
variable values to be in good agreement with
theoretical predictions. This investigation
indicated that an interaction strength of about
0.5 was sufficient to cause distinct clustering of
like-domains,induced by the interaction enthalpy,
without forcing such a great extent of clustering
that pattern distinctness would be lost.

Our second set of experiments was oriented
towards establishing the patten recall
characteristics of our engine, and to identifying

92

the effect of different parameter values. We
defined two distance metrics; an “intra-class"
distance (to measure distances between patterns
in the computational layer induced by the same

" pattern), and an "inter-class" distance (between

prototype versions of the patterns produced in
the computational layer in response to different
patterns in the input layer). For our experiments,
we established an input layer of 20 elements and
a computational layer of (typically) 250 elements.
Typical experiments were run with 3-5 different
input patterns per trial.

For each trial, we determined a "prototype" for
each response class. (A "response class” is the
set of patterns evoked in response to a given
input pattern, when presented at randomly
different times.) The prototype for a response
class is given as the set of most common bistate
activations for the domains in the computational
layer, after both initial activations and Gibbs
Free Energy minimization have been carried out.
The intra-class distance is defined as

1 N
ZAbs (Activ,, | (4)

i=]l p=1
- Proto_Actzv‘. q)

infra,g

where Dy .., is the intra-class distance metric
pattern g, N 1s the total number of domains, P is
the total number of response pattern occurrences
for a specific input pattern, Activ, . is the bistate
activation for domain i of response p for pattern
q and Proto_Active,, is the activation of the ith.
domain of the prototype response for that input
pattern.

Next, we calculate the inter-class distance
metric, Djypersx

D

N
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where Proto_Activ;; is the activation of the ith
domain in prototype pattern j, and Proto_Activ;
is the activation of the ith domain in prototype
k.




II. RESULTS

Typically, intra-class distances are on the order
of 0.05, and inter-class distances are about 0.3.
The inter-class distance for two randomly-
generated patterns would be 0.5. Thus, the
prototypes are not as distinct as they would be if
they were completely independent of each other.
Nevertheless, the distance between prototypes is
about an order of magnitude greater than the
distance between intra-class patterns.

IV. CONCLUSIONS

We have found that the new computational
engine creates distinct patterns in the
computational layer when presented with distinct
inputs. There is high similarity between the
patterns which form in the computational layer
in response to different presentations of the
same input; the variance is due to the random
way in which domains are selected for Gibbs
Free Energy minimization. We anticipate that
the clustering of like-domains in the
computational layer, induced by minimizing the
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GFE, can lead to greater robustness of pattern
recall when input patterns are corroded by noise.

As we refine the system to have temporal
dynamics, induced by mnoise and domain
activation decay, we anticipate that GFE
minimization acting as ongoing dynamic driver
will lead to interesting temporal properties of
pattern free association. By creating long-range
connection between different domains in the
computational layer, we anticipate being able to
induce preferential orders recall in temporal
activation of associated patterns. This will be a
new feature in the design of computational
engines, and can lead to applications in modeling
complex systems.
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