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Abstract

The field of neural networks has evolved sufficient richness within
the last several years to warrant creation of a “logical topology” of
neural networks; a conceptual layout of the relationships between dif-
ferent neural networks. By identifying the fully-connected network
of continuously-valued neurons as a logical “North Pole,” and using
the increase in network structure and specificity as a qualitative “dis-
tance” between a network and this pole, we achieve a preliminary
topology. Using structural similarity as a basis for making distinc-
tions, we obtain five distinct categories of neural networks. Within
a category, networks are not only structurally similar, but also have
similarities in dynamics, learning rules, and applications.

Interesting networks with potentially novel properties can be cre-
ated by combining basic aspects of different network classes. Exam-
ples are the Boltzmann machine, which combines the energy-function
minimization of a laterally-connected (Hopfield-type) network with
the structural organization of the multilayer feedforward (Perceptron-
type) networks, and the masking field network, which embeds a cooper-
ative-competitive second layer into a classic ART 1 architecture.
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1 A Rationale for a Logical Topology

As any discipline matures, one of the steps its practitioners undertake is to
form a topology for that discipline; to lay out logical relationships between
its various components, and to identify what structures emerge from the
initial seeming chaos of the discipline’s early years. The task of developing
a coherent internal structure is crucial to the establishment of a discipline.
An example of developing this structure can be found in the history of the
Artificial Intelligence (AI) community.

About ten years ago, in the heydey of artificial intelligence, there were
strong opinions regarding the relative role and importance of different aspects
of AI. Daniel Dennett [1] relates the following story:

“... in a heated discussion at MIT about rival theories of language
comprehension, (Jerry) Fodor characterized the views of a well-known
theoretician as ‘West Coast’ – a weighty indictment in the corridors of
MIT. When reminded that this maligned theoretician resided in Penn-
sylvania, Fodor was undaunted. He was equally ready, it turned out,
to brand people at Brandeis or Sussex as West Coast. He explained
that just as when you’re at the North Pole, moving away from the Pole
in any direction is moving south, so moving away from MIT in any
direction is moving West.”

Dennett then used this story to organize a somewhat tongue-in-cheek
“logical topology” of artificial intelligence, with MIT, the “Vatican of High
Church Computationalism,” as the North Pole, and with the different as-
pects of West Coast “Zen Holism” distributed along the 360◦ horizon. Fig-
ure 1 reproduces Dennett’s world-view of AI at that time. The neural net-
work community is well-represented with such figures as Fahlman, Hinton,
Smolensky, and McClelland; even Feldman can be considered a connection-
ist. It is interesting to note, though, that Dennett’s organization places the
neural networks community only 90◦ away from Marvin Minsky, whose early
comments had such an influence on the field.

At the time when Dennett wrote is first draft of the article in 1984,
members of the neural networks community were still out beyond the pale;
part of the West Coast “New Connectionism.” But since the 1986/87 re-
emergence of neural networks as an identifiable discipline, we have taken on
a size and diversity equivalent to that of the AI community ten years ago.
In this light, it may be to our advantage to examine the landscape – the
topology – of the different neural network approaches and paradigms.
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Figure 1: Logical topology of computational approaches, by Daniel C. Den-
nett. (Permission granted to reproduce.)
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By creating a topology of neural networks, we obtain several advantages.
First, we have a greater sense for the relationship between distinct neural
networks. “Closeness” in a topological sense should indicate some similarity
not only between network structures, but between dynamics and learning
methods as well, since both dynamics and learning are intimately related to
structure. This “logical topology” approach allows us to more clearly identify
properties of a class of networks (networks which are clustered together in
a topological relationship). The existence of class properties suggests that
subtly different networks within a class can often be used for the same task or
application, but with different performance characterizations. Comparative
evaluations of networks within a class will be useful in ascertaining these
differences. Finally, such a topological organization suggests the basis for
both a more formal description of networks and their properties.

Within the past several years, there have been various efforts to build
some classification or ordering of existing neural networks. None so far have
produced a useful and adopted taxonomy, although the various distinctive
neural network paradigms are by now largely understood by most members
of the neural networks research community. Thus, some effort to create a
“logical topology” for neural networks is now in order.

2 What is North?

If we accept the idea that a logical topology of neural networks is a reasonable
thing to develop, then our first question is equivalent to: What is North?
Dennett humorously organized the main computational approaches of AI
around a mythical “East Pole” centered at MIT. Can we even envision a
similar central point for establishing a topology of neural network systems?
Further, can we identify some concepts of directionality and distance between
neural network paradigms? To do so, it helps to look over the (recent)
history of neural networks and identify the efforts which others have made.
Specifically, we search for and evaluate the distinctions which others have
used in building a classification of different neural network systems.

In 1984, when neural networks made their most recent re-emergence as
a computational discipline, there were only a few types of neural networks
which were commonly known. As an example, four different types of networks
were described in the now-classic Parallel Distributed Processing [2]. The
next year, Richard Lippmann’s “An introduction to computing with neural
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networks” [3] was an underground hit at the first International Conference
on Neural Networks. At this time, Lippmann’s paper was the only one to
review a variety of different network types.

Lippmann made two primary distinctions: (1) whether a network had
supervised or unsupervised learning, and (2) whether it operated on binary
or continuously-valued data. We now know many networks that, with suit-
able modifications, can operate on both binary and continuous data (e.g., the
discrete and adaptive Hopfield-Tank networks, and the two main versions of
Adaptive Resonance Theory networks; ART 1 and ART 2). Thus, making a
network-class distinction based on input data type is not very useful. Fur-
ther, some networks (e.g., the Learning Vector Quantization network and the
Neocognitron) can learn in either supervised or unsupervised modes. Thus,
supervised vs. unsupervised learning is not a good primary distinction either.

Shortly after Lippmann published his work, Robert Hecht-Nielson pub-
lished a review article describing thirteen different types of neural networks
[4]. Although he listed the unique characteristics of each of these thirteen
networks, he made no effort to form a taxonomy.

The following year, Patrick Simpson began circulating a pair of com-
prehensive review papers which described a total of 26 neural networks [5].
(This pair of papers was published as a book in 1990 [6]). Simpson’s review
papers (1988), and later his book (1990), classified networks into one of four
groups based on two distinctions espoused earlier by Bart Kosko [7]. One
distinction was between networks with supervised vs. unsupervised learning,
and the other was between feedforward and feedback networks. Again, this
classification scheme is not useful across the broad range of networks. As
just discussed, the distinction between supervised and unsupervised learning
is not a useful primary distinction between network types. The distinc-
tion which Kosko made between feedforward and feedback networks is not
generally useful; it highlights his Bidirectional Associative Memory network
without giving appropriate consideration to the many networks which do
not fit well within such a simple structural classification schema (e.g., the
Hopfield-Tank network [8]).

In reviewing the neural networks textbooks now available, and the litera-
ture accumulated over just the past five years, it is easy to identify about four
dozen distinct neural networks. Many of these are described in the Hand-
book of Neural Computing Applications [9], including about a dozen networks
which are not described in the Simpson book. This is clearly a case of ex-
ponential growth, partially illustrated in Figure 2. However in most of the
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summary literature and the many introductory textbooks which exist now,
the different neural networks are presented in a “stand-alone” manner, with
few efforts to create useful conceptual classes of networks.

Figure 2: Explosive growth of neural networks: 1986 - 1991. Data collected
by author from sets of IJCNN and INNS Conference Proceedings, as well as
the Neural Networks journal.

In creating a logical topology of neural networks, it is useful to make a
distinction between different levels of description of a neural system. In the
Handbook [9], I introduced three levels useful in describing neural networks:

• The micro-structural level , for describing the composition of an
individual neuron or other component of the neural network,

• The meso-structural level , for describing a neural network itself in
terms of observables such as numbers of layers, connectivity patterns,
etc., and

• The macro-structural level , for describing systems of interacting
networks.
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The logical topology presented in this work is at the meso-structural level,
and in fact is specifically concerned with laying out a topology in terms of
network structure. It is worth noting that the topology proposed here thus
does not extend to macro-level descriptions, as would be appropriate for
describing such systems as Lapedes and Farber’s Master/Slave network [10],
Werbos’ Adaptive Critic [11, 12], or Carpenter and Grossberg’s systems of
ARTs (ART3) [13].

As we examine an approach to conceptual network topology based on
network structure, we find that network dynamics are intimately related to
structure, and that certain types of learning are often associated with certain
structures and their dynamics. Further, we find that network functionality
(what it does) follows readily from its structure, which reminds us of the old
axiom, form follows function. This selection of network structure serves as
the primary basis for making distinctions among networks and for creating
classes of networks. It also gives us some basis for establishing a qualitative
measure of “distance” between two different neural networks. However, with
the selection of structure as the basic element of our topology, the question
remains, What is North?

3 The Fully-Connected Recurrent Network:

A “Logical” North Pole

In order to identify a logical “North Pole,” one that would help in creating a
topology, it is useful to recall the developmental history of neural networks.
This is because even though we are now able to create a set of logical relation-
ships between different neural networks, there is a strong sense of history to
the development of different neural networks. In fact, during the neural net-
work “glacial period” initiated by Minsky and Papert’s publication of their
book Perceptrons in 1969 [14], many fine scientists developed neural network
approaches in relative isolation. This led to distinctly different “phylogenetic
branches” of neural network evolution. Together, Figures 3 and 4 illustrate
the major lines of development.

The very earliest neural networks were very small and highly structured,
as described by McCulloch and Pitts [15]. Rosenblatt generalized the lay-
ered structure implicit in the early McCulloch and Pitts sketches to form the
Perceptron [16]. Widrow and Hoff used an identical architecture in forming
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Figure 3: Historical development of well-known neural networks: I
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the ADALINE/MADALINE networks [17]. These networks formed the ba-
sis for evolving the phylogenetic branch of multilayered feedforward neural
networks. These networks were characterized, especially in the early years,
by strict feedforward connections. (We note, though, that the concept of
recurrent connectivity was advanced by McCulloch and Pitts, and is not a
recent introduction.)

Figure 4: Historical development of well-known neural networks: II

In contrast to the development of layered feedforward networks, an en-
tirely different line of inquiry was taken by researchers (mostly physicists)
who investigated the properties of systems of fully-connected McCulloch-
Pitts neurons. (See [18] for review and references.) This led to elaboration of
the basic McCulloch-Pitts neuron into a “noisy” neuron, which was investi-
gated by Little [19] and others. A network composed of these noisy neurons
is ergodic, or one which can inhabit, over time, all possible states. Hopfield
[20, 21] investigated the dynamics of a system of hard-threshold, non-noisy
neurons and demonstrated non-ergodic memory-retrieval properties.

A third major line of inquiry (alongside the multilayer feedforward net-
works and the fully-connected networks) was established by the independent
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work of Anderson [22] and Kohonen [23] in studying the associative prop-
erties of networks of linear neurons (as distinct from the McCulloch-Pitts
bistate neurons). A fourth branch in the evolution of major systems of neu-
ral networks was initiated by Grossberg, Carpenter and colleagues [24, 25],
leading to the system of Adaptive Resonance Theory (ART) networks from
the 1970’s to the mid-1980’s [26, 27]. Thus, by the early 1970’s, there were
at least four major evolutionary branches of neural networks.

On examining these different evolutions of neural network methods for
a suitable “North Pole,” we find that the fully-connected network of analog
neurons is the most general neural network system. All other neural networks
can be created by introducing constraints on this structure, which may be
at the neuronal (micro-structural) level, or at the network (meso-structural)
level. An example of a constraint at the neuronal level is to move from the
neuron with continuous output values to the bistate neuron. An example of
a constraint at the network level is to partition the network into two fields,
and allow connections only between the neurons in the different fields (e.g.,
the basic architecture for a linear associator).

Having established the fully-connected network of analog neurons as the
logical “North Pole” of a neural network topology, it is reasonable to think of
“distance” from this “pole” in terms of the degree of structuring (decompos-
ing into layers, restrictions on connectivity, etc.) introduced into a specific
network. To make this specific with examples, both the Brain-State-in-a-Box
and the Hopfield-Tank network are very close to the North Pole. The Per-
ceptron is further away, the Adaptive Resonance Theory networks and the
Kohonen networks are much further “south,” and an exotically-structured
neural network such as Edelman’s Darwin III is off the map. Figure 5 il-
lustrates a preliminary sketch of the topological relations between networks.
Although neighbor relations (expressed as connecting lines) are valid, the
distance measure between networks is variable.

4 The Five Major Neural Network Classes

We find that, simply on a structural basis, we can identify five different
classes of neural networks, as depicted in Figure 6:

• The multilayer feedforward networks, exemplified by the Percep-
tron architecture,
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Figure 5: Topology of neural networks
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• The single-layer laterally-connected networks, exemplified by
the Hopfield (or Hopfield-Tank) network,

• The bilayer feedforward/feedbackward networks, exemplified
by the ART networks,

• The topologically-organized vector-matching networks , exem-
plified by the Kohonen networks, and

• The cooperative-competitive networks , exemplified by Grossberg
et al.’s Boundary Contour System (BCS).

Figure 6: Six mesostructures for neural networks

The first three of the classes itemized above are well-known, and the last
two are less well-known, although the Kohonen networks are rapidly gaining
more prominence.

In addition to these five major categories, there is a final category for hy-
brid networks which cannot be readily classified into one of the five major cat-
egories, because they incorporate a blend of two or more primary structures.
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An example of this is the Hamming network [28], which introduces a Hopfield
network into the output layer of a Perceptron in order to drive the output
towards a known state. With the exception of the cooperative/competitive
and the hybrid classes, which are recent in their evolution, all other neu-
ral networks classes have a development history of approximately 25 years
each. These basic neural network class typologies are illustrated iconically
in Figure 6.

We note that networks with similar structures often have similar dynam-
ics, similar learning rules, and can handle similar tasks. For example, all
multilayer feedforward networks that do not have cooperative-competitive
lateral interconnections undergo supervised learning, and can all perform
pattern recognition and classification tasks.

4.1 Multilayer, Feedforward Networks

The class of multilyaer feedforward networks includes the Perceptron [16], its
close relative the ADALINE/MADALINE, and more structurally-complex
networks such as the radial basis function network [29], the functional link
network [30], sigma-pi networks [2], and various time-delay networks. The
most common learning method is backpropagation, developed by Werbos in
1974 [31] and later presented (although without attribution to the initial
developer) by Rumelhart et al. in 1986 [32]. These networks comprise the
most well-known and commonly-used class of neural networks for both re-
search and applications. Because knowledge of these networks is so common,
no further discussion of this class is necessary.

4.2 Single-Layer, Laterally-Connected Networks

The most well-known exemplar of this network class is the Hopfield (or
Hopfield-Tank) network [8, 20, 21]. It is less well-known that Anderson’s
Brain-State-in-a-Box (BSB) network is almost structurally identical to the
Hopfield network [33]. As single layer, laterally-connected networks, these
are also functionally similar, in that both perform autoassociation. However,
the Hopfield network can also perform optimization tasks [8].

Although similar, the Hopfield and BSB networks differ at both the micro-
structural and meso-structural levels. At the micro-structural level, the dis-
crete Hopfield network has bi-state neurons, the continuous Hopfield network
has neurons with continuously-valued output in the range (0,1), and the BSB
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network has linear neurons with lower and upper activation hard-limits fixed
at -1 and 1. At the meso-level, each neuron in each type of network is fully
connected to each of its neighbors, but the BSB neurons are recurrently con-
nected as well. However, the main difference between these two networks is
in their dynamics; the BSB network eases neurons away from saddle points
towards learned energy minima, so avoiding some of the “spurious minima”
which so plague the Hopfield network [34].

The Hopfield network, unlike the BSB network, can also be used to per-
form optimization tasks. This is because an alternative view of the Hopfield
network dynamics is that it operates to minimize an energy function, and the
only requirement of the energy function is that it meets Lyapunov criteria
[20, 21]. This allows the energy function to be constructed so as to reflect
the constraints of many interesting optimization tasks [8].

One of the most interesting distinctions between networks of this class
and the multilayer, feedforward networks is the difference in the stopping
criteria for network learning and/or dynamics. The stopping criteria for pro-
cessing in a feedforward network is that the flow of activations from one
layer to the next simply reaches the last layer. Since there is no place for
further movement, the dynamics perforce stop. In contrast, in a single-layer,
laterally-connected network, there is no structurally-embedded stopping cri-
terion. The stopping criterion is imposed externally, by having some daemon
observe that continued repetition of the dynamic processes no longer induces
change in the network’s state.

In most cases, it is desirable that the network does converge to some
stable state. Because this is a desired property, much work on the dynamic
properties of a single-layer, laterally-connected network proves (or occasion-
ally disproves) the convergence properties of the system dynamics. This is
necessary since the dynamic properties are not intrinsically bound by system
structure, and must be externally defined. This quality pertains also to the
next neural network class; the bilayer recurrently-connected networks. In
these networks also, the dynamics are constrained by properties other than
network structure, and dynamic convergence is again an important issue.

4.3 Bilayer, Recurrently-Connected Networks

This class of neural network, typified by Carpenter and Grossberg’s Adaptive
Resonance Theory (ART) networks [26, 27] and by Kosko’s Bidirectional
Associative Memory (BAM) networks [7], are a logical outgrowth of early
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work on the linear associator, independently developed by Anderson [22] and
Kohonen [23]. All of these networks use a structure consisting of two layers;
an input layer and an output layer. The output layer associates patterns or
activates a classification node in response to different input patterns. The
linear associator had a single connection weight matrix, and both the ART
and BAM networks use two connection weight matrices; one forward and one
backward.

The most interesting aspect of the bilayer, recurrently-connected networks
is that they operate with a continuous dynamic, much like the Hopfield net-
work. In fact, the BAM network brings together the structural design of a
bilayer network (e.g. the linear associator, but adding in a feedback layer as
in Carpenter and Grossberg’s ART network) with the dynamics of a Hopfield
network. The limitations of this approach are that the BAM is subject to
spurious recall and has limited memory capacity, much like the Hopfield net-
work [34]. Because the dynamics require that the neural network converge
to some state in order for processing to stop, much attention in this class of
networks is given to stability considerations.

4.4 Topologically-Organized, Vector-Matching Networks

The class of topologically-organized, vector-matching networks is perhaps the
most phylogenetically distinctive neural networks class, initiated by Teuvo
Kohonen [35, 36]. These networks are also the most difficult for someone
who works with “typical” neural network processes to understand. This is
because the operations are all performed strictly on vectors that represent
the “connection weights” of a neural network, but with the actual neurons
(to which these weights would normally connect) removed from the system.
The vector operations include use of a dot product to measure similarity
between an input vector and each of the existing network vectors (set of
“connection weights”), and further operations that modify the vector values
of those vectors that are within a certain distance of the “winning vector;” the
one that is found to have the closest vector distance to the input. Two well-
known exemplars of this class are the Learning Vector Quantization network
and the Self-Organizing Topology Preserving Map. The former has been
used successfully for many clustering applications, and the latter extends the
concept of the former into a smoother mapping of different inputs.
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4.5 Multilayer, Cooperative/Competitive Networks

The cooperative/competitive networks are distinctive from their topological
nearest-neighbors; the feedforward networks. However, the distinction lies
more in the concept provoking the network design rather than in the explicit
structural organization of the networks. The reason is that the cooperative
and competitive effects are formally designed as connections between neurons
at the same level in a network structure. They could alternatively – with
a different configuration – be implemented in a feedforward manner. This
alternative configuration builds on the recognition that any arrangement of
lateral connections may be redesigned in a feedforward sense, where the in-
dividual nodes are replicated at the next higher level, and the connections
that originally were lateral ones are now redesigned as structural feedforward
connections. This is a fine distinction, but has served to create a number of
networks with unique and very interesting properties.

Grossberg and Mingolla’s Boundary Contour System (BCS) network [37,
38], developed for image segmentation, is perhaps the most well-known ex-
emplar of this class of neural network. Fukushima’s Neocognitron can also
be considered to be a cooperative/competitive network, due to the inser-
tion of subsidiary inhibitory cells in the feature extraction layer [39]. An
early cooperative/competitive network, which had limited capabilities, is the
Rumelhart-Zipser competitive learning network [40]. Maren et al. [41, 42]
have developed a cooperative/competitive network which is useful for assign-
ment tasks.

In particular, Maren and Minsky [43] have developed a cooperative/ com-
petitive means of creating a perceptual structure for images using the image
segments as building blocks. This approach is somewhat akin to Grossberg
and Mingolla’s work, but operates at the perceptual grouping rather than the
low-level boundary contour level. It also builds a full hierarchical structure
for the image, rather than simply completing low-level units. The resulting
hierarchical structure can be decomposed by a separate process to yield hier-
archical sub-structures that can be ascribed to man-made or natural objects,
taking into account perceptual grouping principles.
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5 Bridging the Gap: Networks which Derive

from Neighboring Classes

Some of the most interesting networks are those which have been developed
out of concepts underlying different classes. Examples of these are the Boltz-
mann machine (and its derivative, the Cauchy machine) and the Masking
Field network. This section describes these as illustrations of how cross-class
networks can emerge and possess interesting hybrid properties.

5.1 The Boltzmann Machine

The Boltzmann machine [44, 45] is an example of a network which bridges
two classes in an interesting and effective manner. That is, the Boltzmann
machine offers interesting properties which are not available to either of its
predecessor networks, and its performance is acceptable.

The Boltzmann machine and the back-propagating Perceptron, both of
which became popular at about the same time, have almost identical struc-
tures. (The differ only in that the Boltzmann machine neurons are hard-limit,
whereas the output of a back-propagating Perceptron’s neurons are contin-
uous.) With the exception of the difference introduced by the two different
neural transfer functions, the dynamics of each network’s operations are also
identical. Yet there is a key difference between these two networks which
manifests in terms of their learning rule, and which has its antecedents in
the developmental history of each network.

Whereas the back-propagating Perceptron is a direct linear descendant
of the Perceptron, the Boltzmann machine actually grew out of the Hopfield
network architecture. The basic, single-layer network was conceptually sepa-
rated into two fields (input and output), much as was done later in the BAM.
The difference is that “hidden” neurons were introduced into the Boltzmann
machine; these connected the input and output layers. As a result of the
evolution from the concept of a fully-connected network, the Boltzmann ma-
chine was created with a learning rule much more akin to a modification of a
Hopfield network learning rule than to the back-propagation network. (The
simulated annealing used within the Boltzmann machine learning is simply a
way to obtain energy function minimization.) Thus, the Boltzmann machine
(and its descendant, the Cauchy machine [46]) can perform optimization - a
function usually associated with the Hopfield network [47, 8].
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The Boltzmann machine and the Cauchy machine are the only feedfor-
ward neural networks which can perform optimization tasks [9, 18, 45, 46, 47],
as well as the classification/mapping tasks usually associated with feedfor-
ward networks. This capability comes about through combining the learn-
ing method associated with the single-layer, fully-connected networks with a
more layered structure.

5.2 The Masking Field Network

The masking field network, developed by Cohen and Grossberg [48], com-
bined with the basic ART network, is offered as further illustration of how
combining characteristics of different network classes can yield a new hybrid
network with interesting properties. In this case, the new property which is
afforded is temporal persistence of memory, or recoding a temporal pattern
sequence as a spatial pattern of different activation strengths. In this, it is
somewhat akin to Edelman’s Selective Recognition Automata [49].

The masking field network combines cooperative-competitive structures
and dynamics with the basic bilayer structure. The first layer is the input
layer (which may incorporate the input, buffer, and feedback storage com-
ponents of an ART first layer). The connections between the input and the
second layer (the masking field) are feedforward. (When the full ART ar-
chitecture is invoked, feedback connections are used as well.) The masking
field nodes each contain a recurrent self-connection and a set of inhibitory
connections to all other nodes in that layer. The self-connection embodies
cooperative stimulus, whereas the lateral inhibitory connections comprise the
competitive aspect.

The recurrent connectivity within the masking field allows temporal per-
sistence of activation, something which is observed in few networks. As
different second layer nodes respond with different degrees of (slowly decay-
ing) activation, a pattern of activity emerges across the masking field layer
which corresponds to the temporal order of pattern presentation in the input
layer. This led Cohen and Grossberg to remark on the predictive aspects
of the masking field architecture. It may be more significant to note that
this architecture lends itself well (as do varieties of the Selective Recognition
Automata [49]) to recoding of temporal sequences as spatial patterns. There
are very few networks which have this capability. By embedding a mask-
ing field second layer in an ART system, Cohen and Grossberg obtain the
self-scaling attributes of an ART classifier, with the additional benefits of
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temporal pattern sensitivity. This is an excellent example of building a new
neural network with elements extracted from the different major network
topologies.

5.3 The Cortical Engine

One of the most interesting challenges which emerges from this depiction of
the “logical topology” of neural networks arises from examining the distinc-
tion between the feedforward networks and the laterally-connected networks.
The final state of the feedforward networks is determined by a structurally-
embedded dynamic, and the final state of the laterally-connected networks is
determined by minimizing an “energy function.” This led us to ask about the
possibility of creating a neural network that had pattern responsiveness (in
the manner of feedforward networks) but which also operated under a contin-
uous dynamic, as with the laterally-connected networks. The advantage of
the latter is that it provides a means for continual operation of the network,
even when an input pattern is not present. This type of process has been
used to create networks which operate continuously, through time, as in the
case of some central pattern generators [50]. When an input pattern is pre-
sented to such a neural network, it acts to “reset” the continuously-evolving
process which manifests as pattern activations in the network.

A new class of neural network is being developed, the “cortical
engine,” which incorporates feedforward pattern recognition as mediated by
a continuous minimization of a free energy in the “computational layer” of the
network. This work builds on a foundation laid by Cowan [51], who suggests
that statistical mechanics processes, including free energy minimization, very
likely underlie neural activity. This connection to actual neural systems is a
step beyond the model invoked in the Boltzmann network, which does not
identify any association with real neural systems.

This cortical engine network, along with the Hamming network, exem-
plifies a type of hybrid in which the input connections are feedforward and
the activations in the pattern recognition layer are modified by a dynamic
process. The cortical engine presents a significant advance in that it ex-
hibits continuous processing, whether or not an input pattern is
being presented to the network . Factors which keep the network from
“freezing” into a free energy minimum include introduction of network noise
along with activation decay. The free energy term includes an entropy term
which governs not so much the distribution of nodes among the “on/off”

19



states, but rather the distribution of “on” and “off” nodes into pattern clus-
ters using the Cluster Variation Method [52]. This drives the network
towards diversified patterns as stable states. This network, when suitable
lateral interactions are introduced, becomes capable of interesting temporal
association behaviors.

6 Summary

A “logical topology” of neural networks is centered around a conceptual
“North Pole;” a fully-connected network of continuously-valued neurons. By
imposing different structural constraints on this very general network, we
obtain the basic forms of five different classes of networks:

• The multilayer feedforward networks,

• The single-layer laterally-connected networks,

• The bilayer recurrently-connected networks,

• The topologically-organized vector-matching networks, and

• The cooperative-competitive networks.

Within each class of network, we find similarities in learning, dynam-
ics, and applications capabilities. These network classes, along with their
most well-known exemplars and primary applications uses, are summarized
in Figure 7.

The topology presented here is limited to descriptions of neural networks
at the meso-structural level, and thus addresses neither networks which are
created via introducing complexities into either the neuronal model or the
connection weights, nor the many interesting systems of neural networks
which have taken on greater prominence in recent years. Further, this par-
ticular topology does not differentiate among network types which involve
different orders of neural connectivity. These areas are possible extensions of
this topology.

Despite these limitations, this topology does suggest some fruitful areas
for research. Often, the greatest advances are made, not by working within a
single discipline or modality, but by cross-fertilization. The preceding section
illustrated three cases which demonstrate the value of this approach, as ap-
plied to building networks which incorporate aspects of two different major
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Figure 7: Structure and applications of neural networks

network classes. By extension, the confinement of this topology to the meso-
structural descriptive level points out the possibility of attending to neural
networks which exhibit cross-scale interaction. An example of this would be
to create neural elements with greater internal complexity, and to make the
response characteristics of these neurons tunable in response to events at the
neural network level. Such cross-scale interactions introduce many interest-
ing issues, such as the mechanisms for interaction, relative temporal scales
for dynamics, etc. Work on a system which introduces these capabilities will
be presented in a succeeding paper.
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