Neural Network
Applications Speed The
Navy’s Warfighting Ability

AJ.Maren, RM. Pap, K.L. Priddy, and R. M. Akita
Accurate Automation Corporation

(1995) Naoal Research Kevier 3, 1=J5,

Editor’s Note

This article describes the successful results of two Navy programs working together. First, funding came from the
Office of Naval Research’s Cognitive and Neural Science and Technology Division; these funds were then channeled through
the Navy's Small Business Innovation Research (SBIR) program to Accurate Automation Corporation (ACC), a small
business enterprise in Chattanooga, Tennessee, which has successfully developed novel neural network technologies for
the Navy. With the help of the SBIR program, ACC has grown from a basement shop of two people in 1987 to 20 people
today in its own building of 10,000 square feet; revenues have grown during the same time from $18,000 to $4,000,000.

ACC has developed among other technologies for the Navy “Neural Network Toolbox” and the Sparse MIMD Neural
Network Processor, which will make a PC computer work as fast as a super computer.

Mentioned in this article are the three phases of funding managed by SBIR to promote small business. In phase 1, up
t0 $100,000 is awarded to a small business for 6 months to evaluate the technical merit and feasibility of an idea; phase
II awards up to $750,000 for two years to expand the results of phase 1 by developing a product; and phase IlI allows for
the commercialization of the product through a “buyer” in the government or private industry.

Thus by choosing small companies with the right capabilities for the job, the Navy can improve the scientific as well
as the business strength of the nation.

Threel1995 11

Introduction

There’s an old adage among’st fighter pilots, Speed is life,
more is better. These pilots spoke only in reference to their
platforms. In today’s world, the need for speed applies to all
areas of warfighting.

The German army, during the 1940’s, mastered the art of
“Blitzkrieg,” or “lightning warfare,” which referred to the
technique of rapidly building for and executing an attack.
Today, all areas of warfare demand speed and precision. This
applies not only to the abilities of the forces in direct contact,
but also - and most especially - to functions that support the
warrior in combat, including sensor fusion, data communica-
tions, database management, target and image recognition, and
rapid surveillance. These capabilities directly influence our
ability to carry the battle to the enemy, and are the critical
elements in our ability to strike an early, crippling blow.

According to Adm. William A. Owens, Vice Chairman of
the Joint Chiefs of Staff, “Read the flagship pronouncements
of each of the military services: The Army’s description of
Force XXI, the Navy’s Forward. ... from the Sea, the Air Force’s
Global Reach, Global Power, and the Marine Corps’ Opera-
tional Maneuver ... from the Sea. The visions they sketch are
remarkably similar. Each points toward the capability to use
military force with greater precision, less risk, and more effec-
tiveness. Each relies on three areas of technology:

o Intelligence, surveillance, and reconnaissance,

e Advanced command, control, communications, com-
puters, and intelligence, and

o Precision-guided munitions.

Each recognizes that its efforts are a part of a broader
undertaking. I believe that this is the U.S. revolution injoint
military affairs.”

Neural networks are a key enabling technology that will
enhance all three of these critical technologies. Today’s battle-
field, whether on air, land, or sea, uses a number of neural
network hardware and/or software applications. For example,
all modems make use of neural network technology for adap-
tive echo cancellation [1]. Many of the neural network inno-
vations are inspired by biological neural networks. The
diversified interplay between different neural network re-
search programs has led to a strong basis for technology
development and transition to fielded use by the Navy.

To meet these Navy needs, we have been developing
novel neural network technologies that will support and speed
the Navy’s warfighting capabilities on many levels. These
technology developments, sponsored by the Navy Small Busi-
ness Innovation Research (SBIR) program, include neural
adaptive control (leading to advanced flight control methods),
sensor fusion and figure-of-merit determination as well as data
compression and automatic target recognition. Neural net-
works apply to Militarily Critical Technologies [2] such as
sensor fusion and signal processing, hypersonic / waverider

12 Naval Research Reviews

Figure 1.

Overall controller system design.

Adaptation
Goal Desired End- Network
End-effector effector Position ~ Desired

Position At Current Time Angles™}

Toverse
Xinematice
Notwork

S

Planning
Network

Sensed
Angles

aircraft design and control, simulation / visualization methods,
and intelligent processing equipment. In the latter area, in
order to develop a platform that can give the Navy maximal
computational speed, Accurate Automation Corporation
(AAC) has developed a Multiple Instruction, Multiple Data
(MIMD) Neural Network Processor N NP™),

The following is a summary of AAC’s recent develop-
ments in neural network technology for diversified Navy
applications.

Neural Adaptive Control

An autonomous control system is one in which the system
itself generates the appropriate control action and/or trajectory.
An autonomous controller, whether used in robotics or for
flight control, should use desired position values in relation to
current position to determine the appropriate motion within a
range that is dictated by the capabilities of the plant. Adaptive
control systems are those systems that change their own para-
metric structure to compensate for changes in the plant being
controlled.

As part of ongoing work in adaptive control, AAC has
developed novel neural network methods for inverse kinemat-
ics determination, under a Phase II SBIR contract funded by
the Office of Naval Research (ONR). Our Neural Network
Processor has been used to solve the inverse kinematics prob-
lem in near-real-time. These solutions were tested on a real
robot using a VME card cage and a dual DSP (TI-TMS
320-C40) implementation attached to the Neural Network
Processor. The tests were run at NASA Marshall Space Flight
Center, AL, using the Proto Flight Manipulator Arm or PFM.
In addition to the inverse kinematics using neural networks, a
unique joint controller [3] was developed using the functional
link neural network paradigm. The overall concept of this is
shown in Figure 1.

The inverse kinematics problem can be explained as a set
of coupled equations which couple joint parameters to the
desired end effector trajectory. Thus, by solving this set of

coupled equations we can determine the desired joint moves
to obtain the desired trajectory. The solution of optimization
problems has been found using recurrent networks [4-8] fora
variety of applications. We will show how the solution of sets
of equations using a linear Hopfield network can also be
modified to solve the inverse kinematics problem.

Classical manipulator kinematics describes the position
of an end effector based upon the positions of the joints of a
robot arm. Generally, this is given by a set of non-linear
equations, f(.) in joint space, (9).

y© =£(6®) m

What we really want to know in the inverse kinematics
case are the desired joint positions, (), to obtain y(t). The
inversion of f(.) is difficult due to the dimensionality, multiple
joints, and the inherent non-linearities found in robot motors.

8®M=f" W) @

A common method to facilitate the solution of the inverse
kinematics problem is to linearize the forward kinematics, i.e.
to differentiate f()) with respect to time, yielding the velocity
equation (or differential kinematics)

dy_d —70) %

where J () is the Jacobian of 6.

The prescribed trajectory y(t) is then tracked by a linear
approximation viainversion of the linear velocity equation and
integrating the obtained joint angle velocities.

Using this approach, the inverse kinematics problem re-
duces to the inversion of the Jacobian matrix J[6(t)] at all time
instants along y(t), yielding

L.

1,0 4y
=07 @

The solution for the inversion of the Jacobian is obtained
using a combination of a feedforward neural network and a
linear Hopfield network. The Hopfield neural network solves
an equation of the form

x(i+1)=Wx(@))+u)

where

W is a symmetric (n x n) real or complex weight
matrix,

u is a real or complex n-vector of inputs, and
x(i) is the ith iteration of the n-dimensional
vector of neuron states.
The resulting equation converges to a solution when the
spectral radius, p(W), is less than unity, i.e. the eigenvalues of

Figure 2.

A hybrid linear dynamic network, comprised of a feedforward
layer followed by a linear Hopfield network.

X
—
Wik
X2
Wk
X3
Wi

W lie within the unit circle in the complex plane. When solving
equations of the form Ax =b, the required finesse is to set the
weight matrix and input for the Hopfield network to

w=1I-ocAfA (6)
u=0A"p)
where

AH is the Hermitian (complex conjugate transpose) of A.
These equations converge for

2
0o amay

@®

In order to speed computations the spectral radius is often
replaced by the trace which is the upper bound for the spectral
radius.

0< ®

o< ..
trace(A”A)

The neural network implementation of the linear Hopfield
solution for a system of equations of the form Ax=b is shown
in Figure 2.

The inverse kinematic problem is solved by forming a
difference equation for (1) at a given discrete time along the

Three/1995 13

Figure 3.

The robot manipulator model used for analysis of the inverse
kinematics problem.

Figure 4.

Desired and actual end-effector trajectory in Cartesian space
(1000 points). The error of mode 2 vanished when the trajec-
tory consisted of 1500 points.

¥3|

shoulder

y(t) trajectory. The required solution is then used to move the
joints to the desired position until the next time increment.
Typically, the solution is obtained in a few hundred iterations
of the Hopfield network on an NNP which is much faster than
real-time to a robot joint.

AO(i+1)=WAB (i) +u (10)

where
u is a real or complex n-vector of inputs held
constant at time t.
A 0 (i) is the ith iteration of the n-dimensional
vector of neuron states for time t.

The first step is to determine the values for the weight
matrix and the input, u, for the Hopficld neural network. From
the previous explanations it is fairly straightforward to sce that
the weight matrix and input to the Hopficld network for the
linearized method of computing the desired joint positions are
given by

W=I-aJJ (1)
u=oJp (12)

2
e
trace(J''J)

14 Naval Research Reviews

(13)

End Effector Desired and Actual Trajectories (Mode 2 of 3)
T T T T T T T T I

Desired Trajectory

08

End Effector Trajectory

0.6

1 1 1 1 1 1
0 100 200 300 400 500 600 700

04 | 1 1

Discrete Time

which yields the “best” solution for A for each time step in
a least squares sense. Once we find the solution for A6, we
issue incremental changes to the joints which maintains the
desired trajectory.

The hybrid feedforward-Hopfield neural network is capa-
ble of solving the inverse kinematics problem in real-time
when implemented on the AAC Neural Network Processor
(NNP™). The Hopfield neural network was shown to con-
verge to an optimal solution in a least squares sense and is
applicable to a variety of optimization problems.

Figure 5.

Joint angle trajectories computed by the hybrid feedfor-
ward/linear Hopfield network.

Joint Angles Computed By Hybrid Network

3
|
]
= g | O
g 5 s |
- 2 N
g / N | |
. AT R o SRS
g 1 =2 ~i___1%
P B i Bk dalnind: datednty
CH ot e et NG |
_g) 0 A
e . li -
< A |
£ i 0
‘8 3
e - N o= === ===
‘0 100 200 300 400 500 600 700 800 900 1000

Discrete Time

This capability simulated the motion of a three joint robot
arm on a Silicon Graphics 4D380VGX superminicomputer as
depicted in Figure 3. The arm was given a straight line trajec-
tory in Cartesian space consisting of 1000 points and 1500
points. The trajectory for the 1000 point case was identical to
the desired with one slight exception in one of the dimensions
as depicted in Figure 4. The 1500 point case was exact in all
three dimensions. The joint angles generated by the hybrid
neural network are shown in Figure 5.

As aresult of the success in the inverse kinematics project,
the concepts were applied to flight controls for LOFLYTE.

Neurocontrol for the Low
Observable Flight Test
Experiment (LoFLYTE) Aircraft

The Low-Observable Flight Test Experiment (LoFLY TE)
Advanced Technology Testbed Aircraft is being built to dem-
onstrate neural network technologies in a real world aircraft
using some of the Navy-funded SBIR research at AAC.
LoFLYTE is laying the foundation for developing next gen-
eration aircraft. The LoFLYTE hypersonic aircraft, shown in
Figure 6, is a research test vehicle to investigate performance
of a waverider aircraft shape at hypersonic velocities (regime
of Mach 5). A waverider is an aircraft which rests on its own
shock wave as it flies. Waveriders such as LoFLYTE would
typically utilize SCRAMIET engines.

Hypersonic aircraft, such as LoOFLYTE, could be used in
a number of applications. First, they could be configured as an
unmanned surveillance platform. Due to their high speed, they
will be able to make passes over areas with minimal concerns
about being shot down. This will greatly increase our surveil-
lance capabilities during hostilities. Second, a hypersonic
cruise missile could be configured with a capability to reach
enemy targets much faster than conventional cruise missiles.
The need for rapid attacks is supported by A. Fields Richardson
(Capt. USN, Ret.), who, during Desert Storm, served as Prin-
cipal Navy Liaison to the Joint Forces Air Component Com-
mander and head of the Navy Strike Cell. According to Mr.
Richardson, “The ability to strike quickly and with great
precision is critical to tactical and strategic success. To launch
a cruise missile or an aircraft at a target 1,000 miles away and
receive a Battle Damage Indication (BDI) report in 20 minutes
will provide dramatic tactical advantage, enabling an irresist-
ible build-up of momentum for the force possessing that
capability.”

Finally, hypersonic vehicles could be configured as a
manned aircraft to be launched from the decks of aircraft
carriers.

The LoFLY TE project, funded from an Air Force Phase II
SBIR Contract, is the focal point and primary demonstration

vehicle for several Phase I and Phase II hypersonic-related
SBIR contracts funded by the Air Force and by NASA.

The primary focus of AAC’s ONR-sponsored research, as
itrelates to this project, has been to apply lessons learned from
biological neural systems to accurate real-time motor control.
This research has led to a number of technologies applicable
to the real-time control of complex systems, ranging from
robotic manipulators to helicopters to hypersonic aircraft.

Real-time control of such complex systems has required
not only new, rapidly adaptive neural network algorithms, but
also hardware which can carry out the necessary computations
with great speed. The ONR-sponsored work has led directly
to development of the AAC Neural Network Processor
(NNP™) discussed in the next section. This processor makes
possible the extensive and rapid computations necessary to
control a hypersonic aircraft that will fly at Mach 5. In addition
to the NNP™, AAC has developed, partially under ONR
sponsorship, a full Toolbox of neural networks and learning
methods. Several Toolbox neural networks, including the
Adaptive Critic [9], have been successfully applied to the
control of complex systems at AAC. The Toolbox is central to
the development of the control algorithms being used in
LoFLYTE. The motor control and motor-mapping algorithms
developed for ONR are other examples of Navy technology
which have formed a basis for portions of the LoFLYTE
aircraft control design.[

AAC has developed neural network control algorithms
inspired by drive-reinforcement theories of animal learning
and adaptivity. We have applied these methods to the control
of electrical motors in robotics tasks. By building upon these
algorithms, we have created an adaptive actuator controller for
LoFLYTE which adapts to changing loads on LoFLYTE’s
tiperons and rudders. We have built upon insights into how the

Figure 6.

The AAC LoFLYTE waverider aircratft.

Three/1995 15

Figure 7.

The AAC Neural Network Processor (NNPTM).

Figure 8.

Block d/aglzram and interprocessor bus architecture for the
AAC NNP™.

T AR

Interprocessor Bus

MAC Input
32K x 16b |16 bit Weight | [Unt =
SRAM < 9 16b x 16b —™ KX
Weight 2 g | Multiplier 5 x32b
M] 2 with 35b _ F FIFO
a2 %! 2 Accumulator | |2 |€ with Bus s
35 bit Activation z 5 ArbLogic["5 |2
s £ [
= [F] se4kxi6d 2§
H SRAM o
N | Memon g
147bit Address
16 bit Newron Value N
32K x 16b 16k x 160
Dual Port
L] SRAM SRAM
Program Program Contrl »| Neuron
Memory Unt 13 bit Address Memory [

15 bit Address

human brain maps control objectives to desired joint motions
to develop new neural network-based methods for mapping
flight control objectives to actuator commands.

Multiple Input, Multiple Data
(MIMD) Neural Network
Processor

As an ongoing part of the research conducted under
sponsorship by the Naval Research Laboratory and by Naval
Command, Control, and Ocean Surveillance Center, RDT&E
Division, Accurate Automation has developed a digital Neural
Network Processor (NNP™) which is capable of true parallel
processing.

The underlying philosophy in the design of the sparse
Multiple Instruction Multiple Data (MIMD) NNP™ has been
to achieve maximum computational efficiency in both a single
processor and multiprocessor environment by optimizing the
design to compute neuron values very efficiently [10, 11]. This
is in stark contrast to previously proposed neural network
processors which are typically based on classical Single In-
struction Multiple Data (SIMD) matrix/vector multiplication
architectures. Our design fully exploits the intrinsic sparseness
of neural network topologies. Moreover, by using a MIMD
parallel processing architecture, one can update multiple neu-
rons in parallel with efficiency approaching 100% as the size
of the neural network increases.

To achieve the desired efficiency we have adopted a
design which: 1) Uses an instruction set optimized for neural
network processing, allowing one to compute a neuron activa-
tion without arranging the weight matrix into linear arrays
and/or inserting artificial zero-weighted connection 2) Uses a
MIMD parallel processing architecture to permit neurons with

16 Naval Research Reviews

totally different input topologies to be updated simultaneously
without loss of efficiency; and 3) Uses dual neuron memories
to virtually eliminate memory contention and maintain abso-
lute memory coherence.

The NNP™ (see Figure 7) is capable of implementing 8K
total neurons with 32K interconnections per processor. A fully
configured PC version of the NNP™ is capable of intercon-
necting 8 modules for a total of 8K neurons and 256K inter-
connections. In addition to the PC version, the VME version
is mated with two TI TMS320C40 DSPs which allow for
real-time data manipulation and processing. The VME card is
capable of stacking three modules with additional modules
requiring a separate VME card due to power limitations. The
NNP™ design is based upon a linked list concept which
allows any neuron in the network to be connected with any
other neuron. Thus, any of the recurrent networks, such as the
Hopfield network, or any feedforward networks such as the
multilayer perceptron, can be easily implemented using this
processor. This hardware capability is vitally important in
control applications because it gives us a neural computation
engine which is easily adapted to changing control inputs and
boundary conditions.

A block diagram of the NNP™ architecture is given in
Figure 8. The program instructions and associated weights, as
needed, are stored in memory. For a given operation, the
instruction is decoded and the necessary value fed from neuron
memory to the multiplier input unit along with the weight
value the two values are fed to the Multiply ACcumulator
(MAC), and the result is passed as an address to the function
memory. The address is then used to fetch the appropriate
value from the transfer function. This result is then passed
though a First-In-First-Out (FIFO) unit and stored in the buffer
memory for each of the modules via the interprocessor bus.
When an “interchange neuron and buffer memory” (inbm)

Figure 9.

NNP™M throughput as a function of additional processors.

8.75(f+1)x10°

|
135x10° p=(f+1)4
|

R P |

1

= Average Fan-In of the Neural Network

Throughput (Processor Cycles)

Processors

instruction is encountered, each processor finishes processing
its code segment before the buffer and neuron memories are
interchanged. Once the memories are interchanged, processing
continues until another inbm or stop instruction is encoun-
tered. The processor also has the ability to multiply two neuron
values together. This is done by passing the previous neuron
value encountered to the MAC as an input and then passing
the current neuron value as an input to the MAC followed by
a multiplication operation. The result is passed through the
transfer function and stored in buffer memory as explaincd
previously.

The fully pipelined implementation of the ncural network
architecture delivers nearly one instruction per cycle which
allows the neural network board to execute nearly 35 million
instructions per second. Using the standard definition of a
connection, a byte-wide multiply-accumulation, the NNP™
yields over 140 million connections/sec for a single board. As
additional modules are added, the speed increases linearly with
over one billion connections per second possible with a full
complement of eight processors.

One of the most vital aspects of parallel computing is the
ability of the architecture to maintain memory coherence. The
AAC NNP™ accomplishes memory coherence through the
use of two separate memories, combined with a special inter-
change instruction. In most neural network implementations,
the results from one layer are multiplied by a serics of weights
summed, and then passed through a transfer function, typically
a sigmoid function, before being used as an output for the
neurons on the next layer.

In the NNP™ the inputs are read from neuron memory,
with the outputs from the transfer functions stored in buffer
memory. When all of the neurons on a layer have been proc-
essed an interchange buffer and neuron memory instruction is
issued which makes the new data available for use by the next
layer of neurons.

A particular NNP™, in a worst case scenario, takes four
clock cycles to access the bus and write a neuron value to the
buffer memory. On the average, each processor would need to
access the bus every (f+1) clock cycles, where f is the average
fan-in to a given neuron in the network. Thus, the number of
processors allowed before contention occurs is p < (f+1)/4.
When p > (f+1)/4, then bus contention occurs. A depiction of
the NNP™ throughput as additional processors is added,
shown in Figure 9. As can be seen in the figure, the throughput
increases linearly as processors are added until p > (f+1)/4.

The inherent speed of the NNP™ in processing sparse
matrices makes it ideal for computing neural network struc-
tures such as the cooperative-competitive neural network,
described in the next section.

Sensor Fusion

One of the primary objectives of our work has been to
develop new sensor data fusion capabilities for the Navy.
Sensor fusion is a Militarily Critical Technology [12-14].
Neural networks present a method by which sensor fusion
systems can learn from experience, instead of always requiring
explicitly the a priori probabilities that are currently needed
for existing (e.g. Bayesian) formalisms. Further, neural net-
works have the potential to give a system adaptability to
changing environments and conditions. Finally, neural net-
works can be implemented in exceptionally fast parallel-proc-
essing hardware (such as the AAC NNP™), thus overcoming
the huge computational burden associated with real-time sen-
sor fusion. Such a ncural network-based capability can play a
crucial role in enabling the Navy to build integrated systems,
linking together systems which are currently “stovepiped.”[

One of the big challenges in sensor data fusion is assign-
ing each target to the right track. Gates can be used to find out
what targets are in the vicinity of the expected target positions
from different tracks. There is still a problem of conflict
resolution, when different targets could be assigned to two or
more tracks. We have addressed this challenge by developing
the novel COoPerative-COMpetitive (COPCOM) neural net-
work. The ncural network determines which items in a given
Sct A have closest similarity to items in another Set B. This
network operates by making iterative target-to-track assign-
ments, so that:

o Targets are assigned where there is maximal closeness
between a target and the track across a set of matching
meltrics, and simultaneously

o Targets are assigned where there is minimal conflict
between a prospective match and other possibly com-
peting matches.

In this, it offers a more robust approach to assignment than

simple non-optimal assignment methods, and unlike the exist-
ing optimal assignment algorithms, it can be implemented in

Three/1995 17

parallel-processing hardware (e.g. the AAC NNP™) for real
time solutions to the target-to-track assignment problem [15].

The advantage of using the COPCOM network for assign-
ment tasks is that it makes its first (highest strength) assign-
ments to those matches which have the overall highest values
in favor of making the assignment (cooperation across multi-
ple dimensions of similarity), and which also have the least
competition with other possible assignments. By making the
least ambiguous assignments first, the complexity of the over-
all problem is reduced. This can make it easier to determine
future assignments.

The multilayer COPCOM neural network was initially
developed to deal with one of the major challenges of image
understanding - that of recognizing objects when they are
composed of many different parts, are partially obscured,
and/or have specular reflections. To meet this challenge, an
early, prototype version of the COPCOM neural network
identifies those portions in a segmented image which are most
related to each other. This early version of the COPCOM
neural network has been applied to images where high specu-
larities, dark contrasting shadows, and including objects pre-
sent substantial challenges for image understanding [16,17].
The COPCOM neural network has since been redefined to
create associations between objects in two different sets. This
can be used for matching objects, or tracking the evolution of
a multipart system over time.

Inspiration for the COPCOM design came from the per-
ceptual psychology of vision, which suggested that many
factors, e.g. similarity of intensity, boundary line continuation,
and proximity, all played a role in perceptual organization
[18,19].

The COPCOM neural network plays a vital role in target-
to-track assignment in the AAC Sensor Fusion Tracking Sys-
tem. Preliminary coarse and fine gating produce a string of

Figure 10.

The CoOPerative-COMpetitive (COPCOM) neural network ar-
chitecture.

18 Naval Research Reviews

potential new-target matches for every Master Target Track
(MTT). The COPCOM method is then used to resolve match-
ing assignments. A matrix of possible matches to possible
tracks is used to partition out the problem, so that only the
subset of new detections which can potentially match a given
subset of targets is considered at a time. Unique target-to-track
assignments are made before the COPCOM network is used.
A search of the COPCOM output nodes for those whose
activations pass threshold yields an ordered list of non-com-
peting assignments. The pairwise combinations with the
strongest activations are listed first. The Tracker uses this
output to make assignments, prune the remaining possible
target-to-track assignment possibilities, and rerun COPCOM
as often as necessary to get a complete set of assignments.

The cooperative-competitive method has been demon-
strated to be effective for target-to-track association, even in
dense target environments. Some of the scenarios for which
COPCOM effectiveness has been shown include crossing
targets, splitting targets, and dense targets (e.g. close groups
of 4, within overall interacting scenarios of 16 proximal tar-
gets) [20-22].

The items to be matched, i.e., the members of Set A and
Set B (e.g., new detections and tracks), must have the same
dimension or vector length, denoted N, and the elements in
these two vectors should have the same meaning. (Of course,
if matching is being done between elements of the same set,
then this requirement is automatically satisfied; Set A = Set
B.) For example, the items of Set A and Set B could each be
the x and y positions of objects in Euclidean 2-space. We
denote the nth dimension, of the ith item of Set A as a’, and
the nth dimension, of the jth item of Set B as b,J. Let there be
atotal of litems,i=1.Iin Set A, and J items, j = 1..J, in Set
B. The COPCOM network operates on functions of the dis-
tance between the vector components for each possible pair-
wise match of members of Sets A and B, over each of the N
dimensions describing each set member.

The COPCOM network conceptually consists of four or
more layers. A basic COPCOM network is shown in Figure
10. The nodes in Layer 1 represent the individual items them-
selves. The nodes in Layers 2 and above represent the strength
of relationships between pairs of items taken from Set A and
Set B, not to the individual items themselves. This means that
if Set A hasIitems, and Set B has J, there are I*J nodes in each
of N subnets at the second and succeeding layers, to accom-
modate that number of pairwise relationships.

COPCOM works by assessing relative similarities be-
tween items across multiple dimensions. In Layers 2, 3, and
subsequent intermediate layers, there is a separate subnet for
each dimension which will contribute to the overall assign-
ment decision. Thus, if the items in Sets A and B can each be
described by a 2-D vector (e.g., x and y values), then Layers
2,3,... will each have two subnets; one for each dimension. We
could call these the X subnet and the Y subnet. This paradigm

