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ABSTRACT 

A new information measure, drawing on the 1-D Cluster Variation Method (CVM), describes local pattern distributions 
(nearest-neighbor and next-nearest neighbor) in a binary 1-D vector in terms of a single interaction enthalpy parameter h 
for the specific case where the fractions of elements in each of two states are the same (x1=x2=0.5). An example 
application of this method would be for EEG interpretation in Brain-Computer Interfaces (BCIs), especially in the 
frontier of invariant biometrics based on distinctive and invariant individual responses to stimuli containing an image of 
a person with whom there is a strong affiliative response (e.g., to a person’s grandmother). This measure is obtained by 
mapping EEG observed configuration variables (z1, z2, z3 for next-nearest neighbor triplets) to h using the analytic 
function giving h in terms of these variables at equilibrium. This mapping results in a small phase space region of 
resulting h values, which characterizes local pattern distributions in the source data. The 1-D vector with equal fractions 
of units in each of the two states can be obtained using the method for transforming natural images into a binarized equi-
probability ensemble (Saremi & Sejnowski, 2014; Stephens et al., 2013). An intrinsically 2-D data configuration can be 
mapped to 1-D using the 1-D Peano-Hilbert space-filling curve, which has demonstrated a 20 dB lower baseline using 
the method compared with other approaches (cf. SPIE ICA etc. by Hsu & Szu, 2014). This CVM-based method has 
multiple potential applications; one near-term one is optimizing classification of the EEG signals from a COTS 1-D BCI 
baseball hat. This can result in a convenient 3-D lab-tethered EEG, configured in a 1-D CVM equiprobable binary 
vector, and potentially useful for Smartphone wireless display. Longer-range applications include interpreting neural 
assembly activations via high-density implanted soft, cellular-scale electrodes.  

KEYWORDS: EEG, Brain-Computer Interfaces, Cluster Variation Method, statistical thermodynamics, free energy 
minimization, pattern classification, neural networks, neural ensembles  

1 BRAIN-COMPUTER INFORMATION INTERFACES VIA STATISTICAL THERMODYNAMICS 

By harnessing the power of statistical thermodynamics, we create a foundation for interpreting the local pattern 
information available in active neural ensembles, as observable using current brain imaging and EEG methods, along 
with next-generation Brain-Computer Interfaces (BCIs). This paper presents, as a step in ongoing work, a new method 
for connecting unsupervised learning in biological neural networks with the global principle of free energy minimization.  

One key result presented here is that by explicitly accounting for local pattern distributions in the entropy, we connect 
observable spatio-temporal patterns with specific enthalpy parameter values. This provides a basis for connecting 
biological learning and statistical thermodynamics.  

Neural processes are part of an isothermal system consisting of a very large (O(1011)) units, with approximately 19% in 
the cortex (O(1010) units).1 These units can, very broadly speaking, be either active or non-active; we can treat them as 
“on” or “off.” When we apply statistical thermodynamics, we invoke the notion that neural processes should tend 
towards a Minimal Free Energy (MFE) over time. Further, implicit in applying statistical thermodynamics, we have the 
understanding that neural processes – especially unsupervised learning – will not be time-invariant. That is, unlike 
traditional Newtonian physics, processes guided by free energy minimization will tend towards higher-entropy states.  
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At the same time, the biological energy put into a neural system leads to complex order, observable in both space and 
time. Thus, a consistent theme of this work is the interplay between two forces; one towards order (learning to associate 
distinct and reproducible responses to specific stimuli) and another towards greatest possible dispersion over possible 
states (increase in entropy).  

The unique insight offered here is that by using a more complex entropy representation within the free energy equation, 
we explicitly address local pattern formation. We do not seek to characterize local patterns explicitly, but rather the 
degree to which different types of local patterns occur as a function of the interaction enthalpy term. This gives us a 
valuable potential connection between statistical thermodynamics and neural learning. The statistical thermodynamics 
observable result is in terms of configuration variables – variables representing nearest-neighbor, next-nearest-neighbor, 
and triplet configurations. The configuration variable values describe the different kinds of local patterns found in a free 
energy-minimized state associated with a specific h-value. This gives us a foundation, in future work, to associate h with 
neural activations and learning processes. 

2 SPECIFIC NEURAL RESPONSES YIELD DISTINCT INTEGRATED SETS 

Francis Crick, working with Christof Koch, wrote a plea on his deathbed to further our understanding of the claustrum – 
an area of the brain that integrates responses from many different cortical areas. “When holding a rose, you smell its 
fragrance and see its red petals while feeling its textured stem with your fingers,” he wrote.2 “A key property of 
conscious sensations is their integrated nature.”  

This ability to form very distinct yet highly reproducible responses to different stimuli is key to our using EEG – in both 
current and next-generation forms – for practical applications. One such application, suggested by Jenkins et al.3, uses a 
person’s distinctive EEG responses when they detect an image of a known and loved person (e.g., his or her 
grandmother), even when multiple other images are also present. Jenkins et al. suggested such imagery as a new 
biomarker; one which could not be readily foiled because it required the real-time response of a live person. Figure 1 
shows how Jenkins et al. suggested presenting an image that would induce an amygdala-based (emotionally-based 
recognition) response, in concert with other (“decoy”) images.  

Figure 1: A suite of images, including a person's grandmother (eliciting an emotionally-based EEG response) can provide 
stimulus in a new EEG-based biomarker recognition system. (Figure from Jenkins et al., 20143, used with permission.)  
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Although current EEG systems include commercial options with limited sensors and signal degradation due to both 
artifacts and noise, the progression over the past few decades has been towards EEG systems with larger numbers of 
contact sensors, and recent work on direct neural interfaces shows promise. In particular, there is high promise with the 
potential of carbon nanotubes4 to provide interfaces which can provide two-way neural stimulation/signal reception 
together with high biocompatibility.   

3 BCIs: MOVING TO STATISTICALLY-SIGNIFICANT SENSOR NUMBERS 

Current EEG-based BCIs have sensor numbers between O(101) and O(102). Lalonde et al. recently reported efforts 
modeling f-EEG systems with O(103) sensors, using a second order co-variance matrix defined as the electrode-pair 
fluctuation correlation function C(s~, s~’) of independent thermodynamic source components5. Newer direct-neural 
Carbon NanoTube (CNT) sensors are much smaller and can thus be used with much greater sensor density. As CNTs are 
on the same order of size as individual neurons6, it is reasonable that sensor density could become O(105) and higher. At 
these numbers, statistical thermodynamics methods become very relevant, treating sensors as on/off units. Since (with 
CNTs) the sensor size approximates that of individual neurons, statistical thermodynamics methods would then be 
modeling local ensemble activation patterns within the brain.  

This is a reasonable approach, since the brain operates as an isothermal reservoir. Further, recent work by Tkačik et al. 
provide evidence supporting local thermodynamic equilibrium in neural ensembles7,8. Nevertheless, there is a challenge 
with using traditional statistical thermodynamics formalisms, such as the classic Ising model, in which the entropy is 
expressed as a simple function of only the distribution of units among on/off states, where ݔଵ is the fraction of units 
found in the “on” state. ܵ = ଵݔ]− ln ଵݔ + (1 − (ଵݔ ln(1 −  ଵ)] (1)ݔ

The problem is that when this entropy formalism is included in a free energy expression that allows for both a per-unit 
activation energy (so the activation of “on” units is greater than those on the “off” state) and also an interaction energy, 
the phase map reveals limitations on model usefulness9.  

4 THE CLUSTER VARIATION METHOD: A STATISTICAL THERMODYNAMICS APPROACH FOR 
BRAIN-COMPUTER INFORMATION INTERFACES 

Fortunately, there is a statistical thermodynamics method that can indeed usefully help interpret BCI data. This is the 
Cluster Variation Method (CVM), originally devised by Kikuchi in 195110, and since then largely applied to topics such 
as solid-state models11,12. Over the past decade, researchers have identified a stronger CVM role, including its 
relationship with other computational forms such as belief propagation and graph theory13,14. 

The essential core of the Cluster Variation Method is that, in addition to modeling the extent to which units are “on” or 
“off,” we also model the distribution of local patterns: nearest-neighbors, next-nearest-neighbors, and triplets comprise a 
useful CVM. This can be applied to either 1-D or 2-D arrays. The configuration variables ݔ (single unit),  ݕ (nearest 
neighbor), ݓ (next-nearest neighbor), and ݖ (triplet) are shown in the following Figure 2. 

Figure 2: Configuration variables ࢝ ,࢟ ,࢞, and ࢠ in a single zigzag chain for the 1-D Cluster Variation Method. 
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The distribution of the configuration variables ݖ when all enthalpy terms are set to zero is shown in the following Figure 
3.  

Figure 3: Micro-system for the 1-D Cluster Variation Method ensemble (single zigzag chain) with equilibrium-values for the 
configuration values z(i), where the interaction enthalpy is set to zero. 

The reduced free energy, using the CVM approach, for a one-dimensional system (single zigzag chain) of units is: 	ܣଵതതതതതത = ఉభವே = ଶݖ)߳ߚ + ସݖ + ଷݖ + (ହݖ − 2∑ ଷୀଵߚ (ݕ)݂ܮ + 2∑ ୀଵ(ݖ)݂ܮߛ + 1]ߚߤ − ∑ ୀଵݖߛ ] + ଷݖ)ߣ4 + ହݖ − ଶݖ  ,(ସݖ−
(2) 

where ߳ߚ is the reduced interaction energy between unlike units and  ߤ and ߣ are Lagrange multipliers. Also, the unit 
enthalpy for “on” units is the same as for the “off” units, and is set to zero.  

In this equation, (ݒ)݂ܮ = (ݒ)݈݊ݒ −  . The full details of theݖ , andݕ ,ݔ where v can respectively take on the values of ,ݒ
equation and its subsequent analytic solution are available for both the 1-D case15 and the 2-D CVM case16. Further, the 
equation makes use of the equivalence relation 2ݕଶ = ଶݖ + ସݖ + ଷݖ +   .ଶ is the fraction of unlike (A-B) pairsݕ ହ, whereݖ

Thus, a negative interaction enthalpy ߳ represents a stabilizing of unlike (A-B) pairs, and destabilizing of like (A-A and 
B-B) pairs. When we minimize the free energy, a negative ߳ should yield a system with relatively greater numbers of 
unlike pairs compared to a nominal system where the interaction enthalpy is zero. This means that there should be both 
more unlike pairs and also more triplets of unlike units (A-B-A and B-A-B); an anti-ferromagnetic-like ordering. 
Similarly, a positive value for ߳ should yield a greater preponderance of like pairs, and thus induce triplets and larger 
clusters of like-near-like; a ferromagnetic-like ordering.  
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We obtain the free energy minimum by computing the derivative of the free energy with respect to each of the 
configuration variables ݖ, and setting each of these to zero.  

For the specific case where ݔଵ = ଶݔ = 0.5, it is possible to compute an analytic solution for each of the configuration 
variables ݕ and ݖ in terms of ℎ, where ℎ = ݁ିఉఢ/ସ.  

As an example, of one of the solutions for free energy minimization is found for the configuration variable ݖଷ: ݖଷ = ଵଶ(మାଵ)మ  (3) 

5 1-D CVM ANALYTIC SOLUTION WHEN ࢞ = ࢞ = .  

Figure 4 presents the graphical results of the analytic solution for minimizing the free energy of Eqn. (2) when ݔଵ ଶݔ= = 0.5, for the three configuration variables ݕଶ, ݖଵ, and ݖଷ, where ݕଶ is represents the fraction of unlike (A-B) nearest 
neighbors, ݖଵ represents the fraction of like (A-A-A) triplets, and ݖଷ represents the fraction of unlike-unlike (A-B-A) 
triplets. (When ݔଵ = ଶݔ = 0.5, values for ݖଷ are symmetric with ݖସ, values for  ݖଵ are symmetric with ݖ, and values for ݖଶ and  ݖହ are symmetric and can be computed from the previous triplet configuration variables.)  

Figure 4: Results from the analytic solution for the configuration variables, zi, in the 1-D zigzag chain, as a function of the 
reduced interaction energy term ࣕ. The curves for y2, z1, and z3 are shown. A detailed discussion of these results is available15.  

The left-most point on this graph is where 10h=1 (in Figure 4, where the point on the x-axis is 10h). At this point, ℎ = ݁ఉఢ/ସ = 0.1, so that the interaction enthalpy ߳  between unlike (A-B) pairs is negative. We observe the expected 
results; as h decreases, ݖଵ → 0, meaning that the fraction of like triplets (A-A-A) becomes vanishingly small. The 
fractions of unlike pairs (A-B) and unlike triplets (A-B-A), or ݕଶand ݖଷ respectively, approach their maximal possible 
values of 0.5. (Note that ݕଶ has a degeneracy of 2; the A-B pair is complemented by the B-A pair; thus ݕଶ can have a 
maximal value of 0.5. Further, ݖଷ is complemented by ݖସ (B-A-B), so its maximal value is also 0.5.)  
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When the interaction enthalpy ߳ is zero (߳ߚ ≅ 0), we have ℎ = ݁ఉఢ/ସ = 1, seen on Figure 4 at the 10h = 10 on the x-
axis.  At this point and in the immediate neighborhood, we would expect the most “disordered” state.  The cluster 
variables should all achieve their nominal distributions; ݖଵ = ଷݖ = 0.125, and ݕଶ = 0.25. This is precisely what we 
observe. (Nominal distributions for the configuration variables when the interaction enthalpy is zero are given in 
Maren15.) 

As we move to the RHS of Figure 4, where ߳ > 0 and ℎ = ݁ఉఢ/ସ > 1, we have the case of a positive interaction energy 
between unlike units (the A-B pairwise combination). We would expect that as ߳ increases as a positive value, that we 
would minimize ݕଶ, and also see smaller values for those triplets that involve non-similar pair combinations. That is, the 
A-B-A triplet, or ݖଷ, would approach zero. We observe this on the RHS of the above graph. This is the case where as ℎ = ݁ఉఢ/ସ moves into the positive range (0-3, or 10ℎ → 30), we see that ݕଶ and ݖଷ fall towards zero. In particular, ݖଷ 
becomes very small. Correspondingly, this is also the situation in which ݖଵ = 	  ଵ taking onݖ  becomes large; we seeݖ
values > 0.4 when h > 2.9.  

This is the realm of creating a highly structured system where large “domains” of like units mass together. These large 
domains (comprised of overlapping A-A-A and B-B-B triplets) stagger against each other, with relatively few instances 
of “islands” (e.g., the A-B-A and B-A-B triplets.)  

As applied to neural systems, we would expect that areas of activated neural ensembles would be more cohesive rather 
than being disjoint.  

6 CONNECTING THE FREE ENERGY TO UNSUPERVISED LEARNING 

We begin with a multispectral data set Ԧܺ, which may be found per pixel ݔԦ in modeling biological optical systems, or as 
activations of neurons or neural ensembles, and which is also a function of time ݐ. We then describe Ԧܺ as a linear 
mixture, being the product of a mixing matrix [] operating on a set of time-varying sensor data Ԧܵ(ݔԦ, ,Ԧݔ)Ԧܺ  :(ݐ (ݐ = [] Ԧܵ (ݔԦ,  (4) ,(ݐ

without knowing the impulse response mixing matrix function [] of the imaging or neural response system. In this case, 
the vector quantity Ԧܵ(ݔԦ,  represents inputs into the system. This may be sensor data impinging on a biological optical (ݐ
system, or may constitute sensor-driven stimulus or stimulus from afferent neurons in a neuron or neural ensemble.  

We are also, at the same time, parameterizing the entropy S as a set of measurements of sensor data or inputs into a 
system, with the note that entropy truly represents a measurement of the degree of uniformity of data distribution.  

Eqn. (4) presents us with a need to perform blind de-convolution to obtain the inverse of [], which characterizes the 
Blind Source Separation (BSS) problem 	 Ԧܵ (ݔԦ, (ݐ ≈ [ࢃ] Ԧܺ(ݔԦ,  (5)     ,(ݐ
where the inverse solution of source stimulus is based on estimating the neural network learning weight matrix	[ࢃ]. This 
suggests that we would be able to identify the entropy S in parameterized form 	 Ԧܵ as a function of the observable neural 
responses Ԧܺ.  
We now address system entropy, drawing on the notion of the tendency towards entropic increase and noting the 
following relations between the Reservoir (RV) and a sub-system black body (bb):  

 ∆ܵ > 0	; ∆ܵோ ܶ + ∆ܵ ܶ > ܧ− ;	0 + ܵ ܶ ≡ ܪ− > 0    (6) 

where use is made of the conservation of total energy  ∆ܵோ ܶ + ܧ∆ = 0.  
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We expand the internal energy H using a Taylor series in order to estimate the change vector of entropy sources	∆ Ԧܵ ≡Ԧܵ − Ԧܵ. Δܪ = (ு್್ௌԦ )	Δ Ԧܵ = Ԧߤ ∙ [ࢃ]} Ԧܺ − Ԧܵ} → 0  
Ԧߤ (7) ≡ (ுௌԦ); (8)

where Ԧܵ is the subsystem (“black body”) entropy at some initial time 0, 	[ࢃ] Ԧܺ is the entropy at some later time t (see 
Eq. 5), and  ߤԦ is known as Lagrange energy slope vector parameter. Such a blind de-convolution formulism is known as 
Lagrange Constraint Neural Network (LCNN) for Blind Sources Separation (BSS) based on Helmholtz MFE, which we 
express as   ࢚ࢾ[,࢝]ࢾ = ఋு[,࢝]ࢾ = ԦܺߤԦ,  (9)

where [ݓ,], the vector elements giving the dependence of entropy on observable activations, need to be determined. 

Eqn. (9) proposes a means for connecting Hebbian neural learning 
ఋ[௪,ೕ]ఋ௧  with the local-in-time neural activation vector Ԧܺ mediated by the correlated change in system free energy with the change in entropy. 

Biologically speaking, the Lagrange constraint ߤԦ	could potentially be correlated with the house-keeping glial cells, one 
per brain neuron, 10 billion glia cells and 10 billion neurons, driving the brain to isothermal equilibrium at 37oC17, 18.  

More specifically, we envision a potential connection between (Hebbian) neural learning and the observable local 
patterns (degree to which activated neurons or neural ensembles are clustered together). This avenue is part of ongoing 
inquiry.  

7 APPLYING THE 1-D CVM METHOD TO OBSERVABLE DATA SETS 

The analytic CVM solution is possible only when the unit distribution is equiprobable. This is not as onerous a demand 
as it might seem. A two-step process can transform a map of 2-D data into a 1-D array, and from there, generate an 
equiprobable distribution data set for which the CVM is a useful analytic tool. 

Hsu and Szu19 have described how the Peano-Hilbert method can generate a 1-D space-filling curve from a 2-D data 
map, such as is found in EEG and other topographic-mapping or imaging tasks. They demonstrated that this method 
resulted in a 20 dB lower baseline than the prior frequency spectrum. 

To apply the 1-D CVM, is necessary to have an equiprobable data set. Stephens et al. developed an elegant method for 
this purpose.20 Saremi and Sejnowski applied this method to 1-D data slices taken from natural images, in order to assess 
whether the images could be considered at a critical point.21 While they did not find such evidence (applying a 
straightforward Ising model to a 1-D system), their use of the Stephens et al. method sets the stage for analysis with the 
CVM approach. 

One possible application of this approach would be to EEG data, which is the most common means for non-invasive 
inputs to a Brain-Computer Interface (BCI). To do this, the Peano-Hilbert method identified by Hsu and Szu, followed 
by generating an equiprobable dataset using the method of Stephens et al., could then be described by an h-value. The 
choice of granularity in identifying data units, along with the resulting h-values, would potentially assist in characterizing 
neural responses to different stimuli. We note here that applying the Peano-Hilbert method of space-filling curves to 
analyzing EEG data becomes natural when the actual configuration of the EEG sensors follows such a layout.22  
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8 BIOLOGICAL PLAUSIBILITY FOR FREE ENERGY MINIMIZATION IN NEURAL SYSTEMS 

As we approach modeling both neural dynamics and resultant activations within dense electrode arrays, we need to give 
attention to how neural ensembles interact with each other. Early work by Donald Hebb gave rise to the notion that 
organized behavior,23 so that certain neural assemblies become jointly activated. Other crucial early work includes ideas 
about cooperative dynamics originally espoused by luminaries such as Edelman,24 followed by striking observations of 
long-range synaptic correlations by Singer and colleagues.25 More recent studies emphasize the role of learned 
synchronization in neural ensembles.26,27   

In particular, we are interested in statistical thermodynamics-based approaches that can potentially yield phase transition 
models and other useful insights for neural systems.7,28,29 Barton and Cocco have developed a selective cluster expansion 
(SCE) algorithm that yields an approximate solution to the inverse Ising inference problem, which they have applied to 
experimental data for multielectrode recordings.30 The advantage of this approach is that they can disentangle networks 
of direct interactions from correlations, and then extract structural information on selective connections.  

A method such as Barton and Cocco’s is useful for understanding correlated neural activations at the detail-level which 
will influence next-generation BCIs. However, there is advantage to an approach that correlates observable local patterns 
with the single, simple h-value, as was described in Section 5.  

In order to take maximal advantage of this approach for BCI, though, we need to map the local response pattern 
characteristics to a representation of the applied BCI stimulus. This is particularly true since we do not expect a local 
pattern consistency across the entire cortical response region. Rather, areas of activation should be correlated with both 
overall and specific nature of the stimulus.  

A useful means for doing this is to create a hybrid neural network; one which maps an overall activation pattern 
characterization (locally-based h-values) to a response-characterization layer. This kind of hybrid neural network 
[involving a base-layer CVM was first developed using a Hebbian learning rule for pattern classification.31,32  

9 USING THE CVM WITHIN A NEURAL NETWORK ARCHITECTURE 

The preceding sections showed how the 1-D (or potentially, the 2-D) CVM could be used as a means for modeling 
neural processes approaching a local-in-time free energy minimum. The key differentiator in the CVM as compared with 
most Ising-like free energy equations was the explicit inclusion of nearest-neighbor and triplet configuration variables in 
the entropy term. Under the condition of equiprobable distribution of units into on/off states, we have an analytic 
solution for these configuration variables in terms of a single parameter, h, which is a function of the interaction enthalpy 
between neighboring units.  

Section 7 showed how the equiprobable distribution (ݔଵ = ଶݔ = 0.5) requirement could be addressed via a two-step 
mapping process. This would allow the 1-D CVM to be applied as a pattern-characterizing tool, and the resultant h-value 
would indicate the nearest-neighbor interaction enthalpy associated with the observed configuration values. 

A complementary use for the CVM (either 1-D or 2-D) is as a hidden layer component in a complex neural network.  

There is a distinct and unique advantage of using such a neural network-based system for pattern classification based on 
inputs from a complex biological system. This is that we build on understanding that neural activation processes, 
modeled as a collection of interacting ensembles, will seek some form of local-in-time free energy minimization. This 
should hold, even as neural activations are dominantly driven by neural stimulus inputs. However, as neural ensembles 
learn to form stable patterns in response to known stimuli, there are thus two processes at work: activation due to input 
stimulus and modification of which neural units become active in order to achieve free energy minimization. 
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A complex, hybrid neural network incorporating these two processes includes a CVM layer which receives sustained 
activations from an input layer, and is allowed to come to free energy equilibrium. The resulting free energy-minimized 
layer then becomes input to a classification system, with the usual options for training weights from the input-to-hidden 
and hidden-to-output nodes.  

The value of this approach is that the hidden layer thus undergoes two distinct learning processes; one involving the 
usual weight training,33 and another – internally-stabilized via learned lateral connections – incorporating free energy 
minimization, and thus ensuring that the activation patterns produced within the hidden layers are responsive to the 
patterns of the input layer, which are taken directly from neural activations.  

One important reason for investigating this kind of hybrid neural system is that the hidden layer activations can be 
designed to have temporal persistence, even when the initial input stimulus fades. The activation persistence is driven by 
maintaining a free energy-minimized state, where some fluctuation of unit activations is allowable. This provides a new 
means of modeling time-varying pattern evolution.  

There is a strong tradition within the neural network community of having certain neural learning methods based on free 
energy minimization.34-39 What is unique about using the CVM as the free energy minimization basis is that we provide 
an architecture by which the hidden layer can behave in a neuromorphic sense; the formation of local pattern 
configurations can mimic the extent to which such are observed in an actual neural system. This provides a means for 
modeling neural activations within the statistical thermodynamic ensemble of on/off units.  

This approach was the basis for early development of the first CORTECON neural networks, in which a hidden layer 
first received activation from an input layer, and then came to free energy equilibrium using the 1-D CVM. Persistent 
inputs allowed certain active units within the hidden (CVM) layer to develop intra-layer connections that stabilized 
certain local clusters in response to given stimuli. Then, the stabilized hidden nodes generated signals to a pattern 
classification output layer. In the first stage, the CORTECON had a single major free-energy/output-weight-learning 
cycle; in future developments, this could be iterated to yield a selection of hidden layer responses that both achieved free 
energy minimization and effective pattern classifying output signals. 40-42 Ideally, the free energy minimized hidden layer 
would then also have local pattern configurations whose h-values were representative of the local patterns found in the 
input stimulus; preferably coming from activated neural ensembles.  

10 DIRECTIONS FOR FUTURE WORK 

EEG-based COTS systems are finding increased use in multiple out-of-the-lab applications, where the dry-electrode 
interface can be contained within a baseball cap.43,44 Wireless EEG systems, such as those connected to a smartphone, 
are also now available.45 Thus, even with current technologies, the opportunities to use EEG in practical daily 
applications are increasing. Further, there is a movement towards soft electrodes which withstand a subject’s better than 
more traditional stiff-wire electrodes [zz4]. A recent EEG system contains both connectors and electrodes which are 
arranged in a spatially-varying design based on Peano curves; this provides stretchability along longitudinal axes.  

This paper envisions a future scenario in which the density of device contact points increases substantially. This is likely 
within a realistic timeframe, as wireless BCIs become available.46  

One of the most immediate applications of the 1-D CVM for modeling pattern formation is in interpreting EEG signals, 
where the h-value provides an additional input into a classic pattern classification scheme. Given that EEG systems are 
finding greater use as COTS BCI components, this can become a useful addition. In particular, the CVM approach can 
assist characterization of sustained responses to known signals. These are neural responses which have learned, over 
time, to achieve free energy minimization as well as forming a distinct and characteristic response to specific stimuli. 
The CVM value lies in emulating the free energy minimization inherent within the neural processes.  
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This approach has widespread applications beyond pattern characterization in neural systems. One obvious application is 
in providing a useful measure describing local patterns within natural images, building on work established by Stephens 
et al.20 Another potential application is to text data mining, particularly in entity co-reference determination,47 where the 
CVM method provides an alternative to Bayesian prior probabilities for determining the likely entity-type for a given 
entity in the text sequence. It would be necessary to determine two sets of entities, where the distribution of each would 
be near equiprobability. (It may be necessary to do perturbation analyses, or to determine regions on the ݖ as functions 
of h to which various entity sets match.) Nevertheless, it is conceivable that the CVM approach could complement 
Kullback-Leibler or other information measures.48 

11 CONCLUSIONS 

The Cluster Variation Method (CVM) has been used for decades to model processes in solid state lattices. Now, it has 
potentially surprising and powerful applications in the realm of Brain-Computer Interfaces (BCIs). Its value lies in its 
ability to create free energy-minimized local pattern configurations that can be trained to emulate those found in neural 
activation patterns. Recent experimental and theoretical work evidences the strong likelihood of free energy 
minimization processes within neural systems. As the density of neural interface direct connections increases, and the 
connection granularity approaches the neural-size level, it becomes more important than ever to model the statistical 
thermodynamics as well as the activation-induced learning in neural ensembles. An analytic solution to the 1-D CVM 
can provide a simple and expedient connection between local pattern configurations and the interaction enthalpy, leading 
to characterization of neural activation patterns in terms of a single thermodynamic-based parameter. This provides value 
in characterizing ensembles and in improving pattern classification.  
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