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1 Goal of This Paper 

Identify and present basic equations from statistical thermodynamics, with the purpose of 

defining the theoretical framework on which certain inventions will rest, and creating a 

consistent set of notation that will be used throughout other works.  

2 The Partition Function 

Our goal is to compute the partition function, Z. To do this, we define a system of interest in a 

sample region  , and specify a Hamiltonian function   . We identify this region as having 

volume      and surface area     . (Note: The source for the following and most of the 

succeeding equations is Goldenfeld, starting with Chapter 2, Eqn. 2.1).
1
  

We write the Hamiltonian for the system as: 

 
  

   
      

 

 

Equation 1 

Where the   are the coupling constants and the    are combinations of the dynamical degrees 

of freedom, summed over in the partition function. The    may also be referred to as local 

operators. The coupling constants    are the external parameters, e.g., fields, exchange 

interaction parameters, temperature, etc.  

As a simple example for expressing a term in   , we take the Zeeman effect. The coupling 

constant here is the external magnetic field H, and the corresponding local operator is the 

magnetic moment at a lattice site  ,   . Then the contribution of these terms to    is       . 

                                                 
1
 Goldenfeld, N. (1992). Lectures on Phase Transitions and the Renormalization Group (Addison-Wesley). Eqn. 2.3, 

pg. 24, ff. 
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The partition function using Goldenfeld’s notation is: 

                

Equation 2 

where        , and the operator Tr means “sum over all degrees of freedom, the sum 

including every possible value of each degree of freedom.”
2
  

After carrying out the trace, Z depends on all of the    as indicated by the notation […].  

We simplify notation for the set of coupling constants;             , and then we can express 

the partition function as     . 

NOTE: As a point of comparison, the same partition function (canonical ensemble), expressed in 

Hill’s Statistical Mechanics
3
, is given as:  

                        
 

   
 

where    is the sum of nearest-neighbor pair energies for the i
th

 configuration and    is the 

nonconfigurational partition function of each of the N items in the system. (We assume that     

can be separated from the configurational partition function.)  

The correspondence between notational terms is: 

Meaning Goldenfeld Hill 

Partition Function                    

Coupling Constants / External Parameters        

Region under Consideration / Total Number 

of Elements in System  
  N 

Total Number of Configurations  Tr (Eqn. 2)   

   

 

Where given a fixed number of units or sites N, and also a fixed “external parameter”  , we 

identify the total number of configurations as: 

  
  

      
 

and thus   expresses the number of ways of assigning “spins” among the different N sites.  

                                                 
2
 Goldenfeld, N. (1992). Lectures on Phase Transitions and the Renormalization Group (Addison-Wesley). Eqn. 2.3, 

pg. 24, ff.  
3
 Hill, T.L. (1956), Statistical Mechanics (McGraw-Hill). Section 41, pgs 288 ff. 
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3 Applying Statistical Thermodynamics to an Information Corpus 

Periodically, throughout this and other works, I will take a moment to link the concepts of basic 

statistical thermodynamics to potential applications – and interpreting the meaning of these 

applications – in a large-scale data (information) corpus.  

Statistical Thermodynamics Notation Application 

Coupling Constants / External Parameters    System “stimulus” by presenting a 

search / query (for entities/concepts) 

Region under Consideration / Total Number of 

Elements in System  
  Region of a data corpus 

Total number of lattice sites in region        Total number of items (web pages, 

documents, etc.) within corpus region 

“Active” state A vs. “non-active” B A, B Active “item” in response to a query 

that identifies presence of a concept / 

entity in item whose frequency (tf/idf, or 

other designated function) crosses a 

defined threshold. 

Correlation length: Spatial extent of 

fluctuations in a physical quantity about the 

average for that quantity. 

  Two possible interpretations:  

1. Within-domain (where a 

“domain” is an active item): 

“Distance” (metric still subject 

to definition) between two 

concepts or entities in an active 

corpus item  

2. Cross-domain: “Distance” 

(metric again still TBD)  

between two active items (in 

A) within a corpus 

 

 

4 The Free Energy in a Bistate System (The Ising Gas Model) 

The free energy is defined by 

                   
 

Equation 3 

and the thermodynamic information on the system   is contained in the derivatives, e.g. 

                     etc. These will include bulk effects, surface effects, and various 

finite-size effects. At this stage, with finite region  , there is no information about phase 

transitions or phases.  

We allow the free energy per unit to be f (or fb for bulk free energy).  
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From Hill, Statistical Mechanics
4
:  

The basic equation from simple thermodynamics for the Helmholtz Free Energy is given as: 

       

where A is the Helmholtz free energy, U is the enthalpy, or energy associated with those units in 

an “active” state, T is the temperature, and S is the entropy.  

In differential form 

                    

where  is an external magnetic field, or consistently maintained stimulus. (In our work, we will 

take this stimulus to be a search or query imposed on a corpus containing items that potentially 

respond to this stimulus by changing from an “inactive” state A into an “active” state B.  

Since   (the free energy) and other terms are extensive quantities, we create the term    to refer 

to the Helmholtz energy per unit, or to create an intensive quantity, and similarly for the other 

variables. (Note that this corresponds to f of the immediately preceding Goldenfeld notation.) 

  is an external parameter (which replaces the volume in ordinary thermodynamics, and 

comparable to intensity of magnetization, or strength of input stimulus) and is an extensive 

quantity. (In our application, this can be related to corpus size.) We use   to represent the 

external, consistently maintained stimulus. This can be a magnetic field, when considering a 

ferromagnetic system, or a sustained “search” or “query” activation, for our application. (Note 

that if presenting the query does not change our analog to “system volume,” then this     term 

goes to zero.)  

Finally,   is normally the chemical potential; here we treat it as the energy that can be associated 

with a unit in its activated state, and   is the total number of units (A+B=N) in the system.  

We note that as        , or that as the external stimulus becomes very large, the total 

number of units in the “activated” state A approaches the total number of units N. The reverse, as 

    , is also true.  

5 The Ising Model 

We consider the nearest-neighbor Ising model Hamiltonian 

                                                 
4
Hill, T.L. (1956), Statistical Mechanics (McGraw-Hill). Section 41, pgs 288 ff.  

See also:  http://en.wikipedia.org/wiki/Helmholtz_free_energy, http://en.wikipedia.org/wiki/Gibbs_free_energy,   

http://hyperphysics.phy-astr.gsu.edu/hbase/thermo/helmholtz.html   

http://en.wikipedia.org/wiki/Helmholtz_free_energy
http://en.wikipedia.org/wiki/Gibbs_free_energy
http://hyperphysics.phy-astr.gsu.edu/hbase/thermo/helmholtz.html
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Equation 4 

where we assume a uniform magnetic field H, and the notation <ij> means that “i and j are 

nearest neighbor sites”.    refers to the spin on a site; in the Ising model, we allow for two spins, 

resulting in two possible states, A or B. (Spin up or down, or active / non-active, etc.)  

In this model, the only interaction between spins is the nearest-neighbor interaction, denoted by 

J.  

6 Analytic Properties; Computing the Entropy 

While the free energy    is an extensive property, the local free energy f is intensive. We can 

define the principle analytic properties of f as: 

1.    . 

2.            is continuous. 

3.               exist almost everywhere, and right and left derivatives exist 

everywhere and are almost equal everywhere. 

4. The entropy per site           almost everywhere. 

5.       is monotonically non-increasing with T. Thus,  

    

   
  , 

which implies that the specific heat at constant magnetic field     : 

    
  

  
    

   

   
      . 

Equation 5 

We will find the specific heat useful later when we consider the possibility of phase transitions; 

we will of course subsume the temperature T, but it will be implicitly involved in our definition 

for   .  

For the moment, we use (4) to express the entropy as 
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Equation 6 

where  

   
          

       
 

Equation 7 

7 Free Energy  

When a system is at equilibrium, the free energy is at a minimum. Systems can inhabit 

metastable states corresponding to local free energy minima. Thus, as we seek to use a free 

energy (or “energy landscape”) approach for modeling systems, we need to characterize the free 

energy equation, and identify how various terms interact when creating free energy minima. 

Only then can we ascertain the usefulness of any particular formalism.  

7.1 Limitations of Simple Statistical Thermodynamic Methods 

Previous efforts to apply statistical thermodynamics, in a meaningful way, to large-scale neural 

architectures have failed, largely because the behavior of the most commonly-used equations 

was insufficient to meet modeling needs. That is, a simple bistate system is most often treated as 

a “spin glass,” modeled by the Ising equations, which provide a Helmholtz Free Energy
5
. The 

simple equation for this situation, again using a bistate system wherein the fraction of units in an 

“activated state” is x, and the remaining fraction, 1-x, is in an “inactive state” is given as: 

               

Equation 8 

where A is the Helmholtz free energy, U is the enthalpy, or energy associated with those units in 

an “active” state, T is the temperature, and S is the entropy.  

7.2 The Role of Temperature and the Enthalpy Term 

When we look at a non-reduced free energy equation, we see that raising the temperature T 

causes the entropy term (-TS) to become a deeper concave curve. (Entropy itself is maximum 

when x=0.5 for the case where activation and interaction parameters, or enthalpy, are zero.)  

                                                 
5
http://en.wikipedia.org/wiki/Helmholtz_free_energy, http://en.wikipedia.org/wiki/Gibbs_free_energy,   

http://hyperphysics.phy-astr.gsu.edu/hbase/thermo/helmholtz.html   

http://en.wikipedia.org/wiki/Helmholtz_free_energy
http://en.wikipedia.org/wiki/Gibbs_free_energy
http://hyperphysics.phy-astr.gsu.edu/hbase/thermo/helmholtz.html
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This means that increasing temperature drives the system minimum to be more governed by 

entropy. 

The first RHS term in Equation 8 is the enthalpy term, U, given as: 

      
  

 
   

 Equation 9 

 

The reduced version is divided through by T, giving:  

 

   
 

 
     

  

 
   

 Equation 10 

Before engaging in the detailed equations, we offer some notes about the key parameters,    and 

  . The first parameter,   , deals with the increase in activation energy of the “active fraction” of 

nodes relative to the inactive ones.  

When we create a reduced free energy equation, the early parameters for e1 and e2 are now 

divided by T, resulting in the parameters    and   . An increase in T actually reduces both    and 

  .  

The first parameter,   , deals with the increase in activation energy of the “active fraction” of 

nodes relative to the inactive ones. Thus, increasing T is the same as reducing e1, or the energy 

difference between an active node and a non-active one. Conversely, increasing    is equivalent 

to either reducing T or to increasing the energy difference between active and non-active nodes.  

Either way, increasing    shifts the free energy minimum (at least, for simple versions of the free 

energy equation) to states where the equilibrium state requires fewer active nodes.  

This only carries us so far. Systems with only activation energy, and no interaction energy, are 

not very interesting. In the simple Ising model (with simple state distribution entropy, not 

considering the effect of cluster distributions), there is just a single minimum when there is no 

interaction energy. State transitions are smooth, and not particularly interesting. This is not a 

useful model.  

Things become a bit more interesting when we introduce the pairwise interaction energy term – 

both for simple and complex energy terms. We typically assign a negative value to the 

interaction energy;    is negative. The physical meaning of this is that an interaction between 
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similar terms (between, e.g., two active nodes) reduces the overall free energy of the system. 

That means that the interaction between two neighboring active nodes is a stabilizing force for 

equilibrium.  

This further means that as we increase the (negative) value of   , we get a more pronounced 

difference in the effect of having nodes in the active versus nonactive states. Even for the simple-

entropy version, we get a rather complex phase diagram. For our work with the more complex 

entropy, we shall simply keep in mind that increasing the (negative) interaction energy promotes 

formation of clusters, because it precisely this interaction energy that causes clusters to persist.  

8 The Full Free Energy Equation 

We divide Equation 8 through by T and the various entropy coefficients associated, and 

substitute in terms. to obtain a reduced free energy expression:  

       
    

 
                

    

 
                    . 

Equation 11 

In this equation, the two epsilon terms refer to the energy associated with the active units (ε1) and 

the interaction energy (where we have used ε2 /2 as the interaction energy term for simplicity, 

given how the following equation resolves). The term on the far right is the (reduced) Canonical 

Ensemble, which will give us a set of simpler terms in the following equation. Various 

coefficients have been absorbed into the “reduced” free energy   .  

In nature, all systems tend towards a minimal free energy state. To compute this, we take the 

derivative of the previous equation with respect to x, the fraction of “active” units, and set it 

equal to zero. This gives us: 

   

  
        

 

  
                       

Equation 12 

When we examine the phase diagram (parameter space of solutions) for the previous equation, 

we find that there is nothing of use in modeling the large-scale distribution of items. (This 

discussion is carried out in greater depth in the Applications White Paper, TR 2009-002.  

The deficiency with the approach described in the previous section is that it has too simplistic a 

representation for entropy. The entropy term of the previous equations, based on the classic Ising 

model, represents only the fraction of units in an active state.  

A new formulation is needed. This is presented in a succeeding Technical Report.  


