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1.0 INTRODUCTION

Recently, Hopfield {1982, 1984], Kirkpatrick et al., (1983}, and Hinton and Sejnowski
[1986] have used an analogy between adaptive neural networks and systems of particles
in thermodvnamlc equilibrium to create the "Boltzmann machine” model for learning

in neural networks.
the

in .

One of the major equations describing the behavior of thermodynamic systems !

Boltzmann equation;
1

1 —exp(—AE[T)

This equation has been used by Hopfeld and others to model the two-state distribu-
tion of meurons in simulated neural nets [Hopfield, 1982 & 1984; Kirkpatrick er al.,
1983; and Hinton & Sejnowski, 1986, Several sources present derivations of this distri-

bution, but cannot be readily understood by anyone who does not have a substantial

i1

P, =

background in mathematical physics.

* This tutorial dervies the Boltzmann distribution from the perspective of statistical
thermodvna.lmcs which prowdes the context in which this function was originated.
The emphasis is on providing a complete derivation, and in showing how the results

are both intuitively and logically useful for modeling the behavior of other systems,
such as ensembles of neurons.

The use of this equation comes abous shrough the analogy between systems of neurons

and systems of particles in thermodynamic equilibrium. The points of commonality

between the two conceptual systems are:
« Both consain large numbers of units (neurons or particles},

e Both neurons and particles may be in one of a finite number of states, and
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e Both systems exhibit interactions among its units; the particles in a thermody-
namic system may interact with their neighbors, and neurons interact via synaptic

connections.
The analogy has its weak points; e.g. the interactions between nearest-neighbor parti-
cles in a thermodynamic system are not very much like the excitatory and inhibatory
connections between neurons. Nevertheless, the common use of the Boltzmann ma-
chine model of neural networks makes it worthwhile to explore the analogy further,

and to present a readily-understood deviation of the Boltzmann distribution equation.



2.0 DERIVATION OF THE BOLTZMANN DISTRIBUTION

We first consider of a fundamental concept in statistical thermodynamics; the Gibbs

free energy (G) of a system. This energy is characterized by the relationship
G=H-TS, [2]

where H is the enthalpy, S is the entropy, and T is the temperature. Enthalpy is a
function of pressure and the total internal energy of each of the particles inthe system.

Entropy is a measure of the randomness or disorder in the system.

We can think of the system as being composed of a large number of units or particles,
each of which can assume any energy ¢ from a set of possible energy states. The
probability with which a unit will be in state 7 is Pj. The sum of all probabilities P;

is equal to one;
N ' - -
S P=1, "~ 3]
j=1

where ¥ is the total number of states available.

The values for enthalpy and entropy each depend on the probabilistic distribution of

units among the energy states. For enthalpy, we have

N
H=3 z; P+ PV, {4‘;

i=1
where P is pressure, V is volume, and z; is the energy associated with state J.

The entropy is defined as
N

S=—-kY P;inP;. (5
=1

Thus, inserting Eqns. {4] and 5| into 2, we obtain

G=G(P)=> Pj=PV—kT) P inP; 61
j i

where k is a known constant.

A system has reached equilibrium when no further spontaneous processes are possible.

At equilibrium. the free energv G is at a minimum. (This is the defining condition for

equilibrium.) The “minimum free energy” can be found by taking the derivative of &
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and setting it equal to zero. (This defines either a local minimum or maximum. We

can examine the shape of the curves for G to determine which it will be.)

Thus, at equilibrium,
o _
oP; -

Changes in G are dependent on many variables; the pressure and volume changes in

0. [7]

a system, changes in temperature, and changes in the distribution of the particles
among the different energy states. We can assume that the pressure and volume of

the system are kept constant. This assumption does not affect the relevance of our

model.

This leaves for consideration how G, is affected by two factors: temperature (T) and
the distribution of the different units in the system among the possible energy states
(P;). Holding T constant and taking the derivative of G with respect to P; allows us
to see how G explicitly depends on P;. (This is mathematially allowed since T’ does
not depend on P;.) However the distribution of units among different energy states

does depend upon temperature. We will examine this relationship later.

The derivative of G with respect to P, is expressed as follows: {Note that we use
the symbol “9” instead of the more common “d”. This is to remind us that we are
taking a partial derivative; the derivative of G with respect to P;, while keeping other

variables (e.g., temperature} constant.

3G 9 | |
= a—Pj{; 5 P; * PV + kT; P; InP;}

3F; =
| s
2, 2,
=L S P kT2 Y P} InP;
3P; = i kTaP,-;PJ "
This yields (for details, see the appendix):
aG . , .
_ = F =+ 1+ [P]_ 191
5P, ;+kT'1 nP;, 91
For equilibrium (Eqn. 7),
10

0==z; + kT[1+ In P}
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Rearranging terms gives

In Py == [1+ %] [11]

Taking the exponent of both sides {details in appendix) yields:
1 —_—
Pj =~ exp (j) [12]

Physically, this means that the probability with which a unit will be in state 7 depends
on the energy of that state (¢;), and the temperature (T'). We can examine the
dependernce of P; on each of these two variables. Note, first, if the energy of a state j
is low (&5 = 0), then the quantity -z;/(kT) is also close to zero. Then,

exp( ) ~ exp(0) = 1 3],

This means that the probability that a unit will be in state j is high (z'l) if the
energy of that state is low (£j = 0). (Equation [12] was achieved without normalizing

values for P;; thus we are considering only the influence of ¢; and T on the term

exp{-z;/hT).)

If <; is high, then z;/(kT) is also increased. We are considering the quantity
exp (—=; / kT), and the exponent of a large negative number is very small (exp(—cc) =
0). Thus, if we have a state where the energy is high, the probability that a unit will

be in that state is small.

Although our d&;,'tﬁtion depends on T being constant, the témpera.ture influences the
probability distribution among states. z;/(kT) can be large, and hence

exp (—=;/kT) is small. Thus, at low temperatures, the whole probability distribution
shifts so that more units are in a low energy state. Likewise for high temperatures,

£;/(kT) is small, and thus more units can slip into a high energy state.

Suppose there are only two possible energy states in a system, state a and state 3.

Then

Po:':‘"P-S:la
Pa‘—'l—Pg.



For any two energy states, « and §, we can obtain the ratio of the probability with

which units will be distributed in those two states:

}Ejg% = exp[—(Ex — E5)/T)|

E,=¢ea/k ; Eg=2zp/k.

Py
P

where

23]
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For simplicity, let the fraction of units in state o be n. Then the number of units in
state 8 is (1 — n). We can rewrite Eqn. [6] to explicitly reflect the composition of

a two-state systemn. (We will neglect pressure and volume considerations, as they do

not affect this model.) ' ' . )

Gozantes(lon) +kT{nlnn=(l=n) i (L-n)}. -~ ° 7]
Let us rewrite the enthalpy in terms of Ag, where Az = &g ~ga:

G=—(eg—¢ca)n+2g+kTninn+(1-n)in(l- n);i
=zg5—nAc+kTninn+(1—-n)in(l-n) (18..
Note now that the enthalpy term (g5 + nAzn) depends on n only through As,
the difference between the energy levels of the two states.
Before moving on to calculate the derivative of G (and hence distribution among
the two states which would minimize G}, let us examine the"éxp.rgéss‘ion for G
graphically. Figure 1 (a & b) shows & and TS, (the two componenfs of the free
energy G) at low and high temperatures. H depends on n linearly. S is a more
complex function of n, but is symmetric abous the point n =.5. As T increases,

the TS curve will increase proportionately. (The enthalpy H may also depend

on T, but not to the same extent.)
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Figure 1. {(a & b}. Low and high temperature curves for H and T'S.
(¢ & d}. Low and high temperature curves for-G=H -TS.

As T increases, the value for n which minimizes G also increases.
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or

or

Figure 1 (¢ & d) shows the curve for G {or, H — T'S). As T increases, the value
for n which minimizes T also increases. Thus, at high values of T, we expect

proportionately more of the units in the system to be in the high energy state

(state ).

We can take the derivative of G as before, this time with respect to n.

oG 0
-éz—%{sﬁ—nﬂc-!—kl"[n Inn+(1—n)in(1—n)}
=—Aa+kTain[n Inn+{(1—-n)in(l—n)

=-Ac+kT[lnn+1- In(1—-n)—1

= -—Ac+kT{Inn— In(l—n} [19]
At equilibrium BC/Bn =0, so that
Ac=kT Inn— In (l—n)f.- 120i
This yields
Inn— In{(l—n)=In (17_172):’%2 121]

Substituting AE for Az/k, we have

n AE
{ = 1291
" (l—n) T , v

Taking the exponent of both sides, we have

= exp(AE/T) {231

Solving for n yields

= exp(AE/T},
o1 exp(AE/T)

1/n — 1 =exp(—AE/T),

1/n =1+exp(—AE/T),
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[24]

which yields
: n=PFP,= 1
T 0T 1+ exp(—AE/T)

The physical meaning of this equation can be interpreted as follows: Suppose AE is
large (eg > z4, Or state 3 is in a much higher energy than state a). Referring to our

previous arguments, we would expect almost all units to be in state ¢, or that n = 1.
This is borne out by equation [24]. If AE is large, then exp (—AE/T) is very small,
due to taking the exponent of a large negative number. For reference, Figure 2 shows

the exponential curve.

Xx=-AE/T . puen

X ' ' 1 T >
-2 -1 0 1 2
——Low T——+—High T—sf+—Low T—]
AE>T (JAE] < T) AEST

Figure 2. Graph of the exponential function.

With exp (—AE/T) close to zero,
1 1 ;
= = =1, 25
T=1< ezp(—AE/T) = 1+ (negligible quantity) 23]

or the probability that units will be in state a is close to 1, as expected.

Equation {23} is graphed in Figure 2 as a function of T.
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Figure 3. Graph of Equation {25}, y = 1/{1 — ezp(—6E/T)).
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3.0 APPLICATION OF FREE ENERGY METHODS AND THE BOLTZ-
MANN DISTRIBUTION TO NEURAL NETWORKS

The key feature of the statistical thermodynamics methods discussed in the previous
section is that they model the most probable behavior of a system in thermal equi-
librium. More advanced treatments of this subject yield descriptions of the system in
terms of the average behavior of units in the system, and in terms of small fluctuations
around the average. In this context, we see that there could be'some analogy between

units in thermal equilibrium and interconnected neurons. In the type of therma sys-
tem just described, there were two states (¢ and 3). To carry the analogy further,

each neuron may be in one of two states; above-threshold (‘activated,” or ‘firing’), and

below threshold (‘non-activated’).

If we want to express the analogy mathematically, then we need to show that the
neural network system may be described by a model similar to that used for thermal

systems in the previous section. Hopfield developed this analogy in a landmark paper

on neural networks. He defined the input to each neuron as

nput; = » . TiVj [26]
-

where Input; is the input to the i** neuron, V; is the ‘state’ of each neuron {1 or

0), and Ti; is the interaction between neurons, represented as the “effectiveness of a
synapse:

For computational simplicity, he further defined a simple function for Tj;, and set

Ti; = Tj;. He defined the total enthalpy of the system as:

E=H=""3 ) TV

i=y 7

B l\)-
=~

Hopfield used the term ‘energy’ for ‘enthalpy’, which is acceptable. However, his term
‘energy’ does not mean the same thing as ‘free energy’ which requires consiceration

of both enthalpy (or energy) and entropy.!

1 Hopfield did his initial derivations using an information-theoretic approach. which

is formally isomorphic to the statistical mechanical method, and which yields the same
results. '
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Hopfeld gave this change in energy (AE) which would be produced by a single unit

changing state (AV;) as:
AE = -AV;Y T4V, [28]
e
Note that the use of a minus sign indicates that energy is increased if Z TV is
positive, and we go from V; =0to Vi =1 (AV; =0—-1= —1), but decrea.sje#:energy if
we go from V; =1to V; =0.
Hopfield also used an entropic measure similar to that used in the previous section,

where
S=-> PjinPF;, [29]
7

This allows us to form an expression for the free energy of the “neural system” which

considers the change in free energy which would be produced by -having the differens

neurons change their “states”.
G=Y> AEP,+T) PiinP;. : (30]
7 I a '
The form of this equation is similar to that of Eqn (6], and so solutions for the minimum
free energy are also similar. Thus, the previous results are covered, anc we again have

1 N
= . 1241
1 +exp(—AE/T) b

Py
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4.0 THE SIMULATED ANNEALING METHOD OF NEURAL NETWORK
WEIGHT OPTIMIZATION

Although Hopfield {1982] identified both the enthalpic and entropic terms described
in the previous section, he did not go so far as to connect them in the form of a free
energy equation, and derive the results of eqns [30} and [24]. This was because the

approach he used did not identify a need for the “temperature” term.

The combination of these terms into a free energy equation and derivation of the
probability distribution equation [Eqn. 24] was actually done by Kirkpatrick et al.
[1983]. Kirkpatrick and his colleagues carried the analogy between systems of neurons

and systems of units in thermal equilibrium even further, by addressing the problem

of learning appropriate weights for neural network systems.

In the Boltzmann machine approach to neural networks developed by Hinton (as an
extension from the Hopfield method), there are three types of neurons; input, hiddexn.

and output. These neurons are fully connected, and the weights between the neurons

determine the output of the system given an initial input vector.

In order to approach the most effective weight assignments, Kirkpatrick and his coi-
leagues developed the simulated annealing method. Kirkpatrick’s approach was to

identify yet another analogy between types of systems or types of problems:

“Finding the low-termperature state of a systems when a pre-
scription for calculating its energy is given is an optimization problem
not unlike those encountered in combinatoriai optimization. However,
the concept of the temperature of a physical system has no obvious
equivalent in the system being optimized. We will introduce an ef-
fective temperature for optimization, and show how omne can carry
out a simulated annealing process in order to obtain better heuristic

solutions to combinatorial optimization problems.

I&cerative improvement, commonly applied to such problems, is
much like the microscopic rearrangement processes modeled by sta-

tistical mechanics, with the cost function playing the role of energy.”

[Kirkpatrick et al., 1983
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To implement this approach, Kirkpatrick adapted an algorithm developed by Metropo-
lis et al. [1953]. This algorithm provided an efficient simulation of the thermal system
(a collection of atoms in equilibrium at a given temperature), and iteratively ap-

proached a solution. As described by Kirkpatrick et al. [1983]:

“Using the cost function in place of the energy and defining con-
figurations by a set of parameters z;, it is straightforward with the
Metropolis procedure to generate a population of configurations of a
given optimization problem at some effective temperature. This tem-
perature is simply a control parameter in the same units as the cost
funtion. The simulated annealing process consists of first “melting”
the system being optiinized at a high effective temperature, then low-

" ering the temperature by slow stages until the ‘system “freezes” and
no further changes occur. At each temperature, the simulation must
proceed long enough for the system to reach a steady state. The se-
quence of temperatures and the number of rearrangements of the z;

attempted to reach equilibrium at each temperature can be considered

an annealing schedule.”

The simulated annealing method was first applied by Kirkpatrick et al. [1983i to
determine the partitioning and wiring of microprocessor chips. Since then, the simu-
lated annealing method has been adopted as a useful method for learning connection

weights in a variety Boltzmann machine applications [E.g. Hinton & Sejnowski, 1986;

Sejnowski, 19861.
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5.0 ASSESSMENT OF THE BOLTZMANN MACHINE MODEL

The assumption which leads to the comparision of neural networks and a statistical
thermodynamic/ model is that of the isomorphism between a collection of neurons

and a collection of thermal units. There are several views regarding this comparison.

The most important questions is, “Does it work?” In other words, does trearing a

collection of neurons as an analog to a thermal system yield a better understanding
of or a useful model for a neural network? If so, the answer may be a definate
‘ves’. Using an analogy to a thermodynamic system has led to the development of
the simulated annealing method for connection weight adaptation, and this has had

useful consequences.

At a slightly deeper level, we might ask how far the analogy extends. In a follow-
up paper, Hopfield {1984] showed that systems of neuron-like elements which had a
graded response (range of activity states between 0 and 1) could be computationally
described by the same methods as those used for a collection of binary-state neurons.

Nevertheless, this approach has come under sharp criticism from other researchers in

the arena of neural networks. For example, Kohonen [1987] states:

“At least one should realize that there are certain views frequently held of neural
networks in modelling which are completely untenable:

- The states of the neurons are not binary, and thus not describable, e.g., by the

spin formalism. Individual neurons are not bistable latches; there is no evidence
for them memorizing the active or passive state. This mlsconcepr.mn may have
resulted from the ol%rvatlon that the neural impulses have a constant ammitude‘. o
(#all-or-none”) '
There is even very little evidence for neurons operating as threshold-logic units.
Those thresholds which are encountered in experimental stimulus-response rela-
tions are more probably due to collective feedback effects, similar to the familiar
Schmitt-trigger action in basic electronics, although there is no threshold in the
components which make up the Schmitt-trigger.”

This point of view may be temporized by realizing that the model proposed by Hopfleld

and generalized and adapted by Hinton, Sejnowski, Kirkpatrick, and others need not be

considered a direct attempt to emulate a system of biological neurons. Instead, by viewing
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their work as suggestive of a computational methodology, we can revert to our original
question of “Does it work?.”

Neverthetess; there are two important areas to consider for further development and
applications. One takes us further into the realm defined by the initial analog between

neural networks and thermodynamic systems, and the other takes us further away from

that realm.

Moving deeper into the analogy, we find that there has been a recent interest in the
ways in which known models can be used to describe the anomalistic behaviors of large
scale systems {Huberman & Hogg, 1987, Shraaer, Hogg, & Hukeman, 1987}, Specifically the
concepts of phase transitions, metastable states, and self organizing systems, as understood
from the perspective of statistical thermodynamics and related fields, may be even further
useful in describing both the behaviors of biological neural and computational neural-like
systems. This may be even more true than is curreritly a.f)précia.ted, given t_hzit: biological
systems may as a whole undergo state changes, inhabit metastab il_iﬁies, or exhibit complex
periodic behaviors.

The types of equations considered in this tutorial are a simplified form of those which
caan describe the more complex mentioned above. Inclusion of higher-order interaction
terms, or considerations of the behaviors of ensembles of domains (where each domain
of units or neurons inhabits a given state) allows this type of method to describe phase

transitions between stable and metastable states.

In the other direction, moving away from the analogy between statistical thermody-
namics and neural systems, we find that research in the more complex neural systems is
moving towards modeling their time-dependent behaviors. Work by thonéﬁ. (1987, and
references therein| and Carpenter, Cohen, and Grossberg 5-1937, and references contained
therein| exemplify the leading-edge research in niodeling neural nets. In general, the time-
dependent behaviors of then neural-network system which they study may be modeled in
terms of Liapunov functions, which are a class of continuous, and monotonically- decreas-
ing functions {Halanay, 1971}, Selection of these functions, and application to appropriate

classes of neural nets, is a challenging research problem today.

- 16 -



SN

ACKNOWLEDGEMENTS

I would like to acknowledge Rosie Dupless, whose suggestions and comments helped
turn this tutorial from a rough draft into a finished product. She also provided the graphs
used in Figure 3. I would also like to thank Lisa Blanks, who did the graphics, and
Becky Stines, Sue Crawford, and Melissa Weatherford, who typed and set the manuscript.
Questions raised by Dr. Moonis Ali about mathematical models of neural nets, as well as
questions asked by students in my Pattern Recognition course (Tim Choate, Rossie D\lefless,

and Veronica Minsky) provided the inspiration and incentive to write this tutorial. L.
Bute mopos Bty wnaswooipt,

- 17 -




REFERENCES

Carpenter, G. A., Cohen, M. A, & Grossberg, S. “Computing with neural nets,”
Seience, 235 (1987), 1226-1227.

Halanay, A. “For and against the Liupunov function,” in Symposia Mathematica, V1

(1971). (London: Academic Press), 167-175.

Hill, T. L. An Introduction to Statistical Thermodynamics, (Reading, MA: Addison-
Wesley, 1960).

Hinton, G. E. & Sejnowski, T. J. “Learning and relearning in Boltzmann machines.”
In D. E. Rumelhart and J. L. McClelland (Eds.}, Parallel Distributed Processing, Vol.
1 (1986) (Cambridge, MA: MIT Press).

Hopfield, J. J. “Neural networks and physical systems ‘with emerﬂent coiIectwe com-
putational abilities,” Prof. of the Nat’l Acad. Sciences, USA, "9 (1982), |2554-2538.

Hopfeld, J. J. “Neurons with graded response have collective computational properties
like those of two-state neurons,” Proc. of the Nat'l. Acad. Sciences, USA, 81 (1984),

3088-3092,
Kirkpatrick, S., Gellatt, C. D., & Veechi, M. D., “Optimization by simulated anneal-
ing,” Science, 220 (1983), 671-680.

Kohonen, T. “Self-organizing maps,
International Conference on Neural Networks (San Diego, CA., June 21-24, 1987). "

Metropolis, N., Rosenbluth, A., Rosenbluth, M. N., & Teller, A. “Equation of state

calculations by fast computing machines” J. Chem. Phys., 21 (1953), 1087-1092.

Seinowski, T. “Learning symmetry groups with hidden units: beyond the perception,”

Physica 22 D. {1988), 260-275.

Shrager, J., Hogg, T., & Huberman, B. A. “Observation of phase transitions in spread-

ing activation netwoks,” Science, 236 (1987), 1092-1093.

- 18 -

» Tutorial presented at the [EEE First Annual




KO 25 S

¢ ARk 1

APPENDIX: MATHEMATICAL FORMULAS

The following relationships may be useful in obtaining some of the results given in the

paper:

Logarithmic /Exponential Relationships:

1. Ina+ Inb= In(ab); Ina— Inb= In (%)
2. exp{a + b) = exp(a) exp(b).
3. In(1) =0; exp(l) = e, exp(—1) = 1/e

4. exp( In (a)) = In (exp(a)) = a.

Relati_onships _from Differential Caleculus:

5. ji‘[f(z)g.(m)];'f(r)d—fff) + g(z)%(zi)
o 2 iy - Ll
7. L exp(a) = expla)i o In (2) =
8. zd;z" = kzF !
Applied to Eqn [9] these relationships give:
2218 in (B)] = B i (B
= PJ(%) < In P
;
=1+ In P
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