Browsed by
Category: Machine Learning

A “Hidden Layer” Guiding Principle – What We Minimally Need

A “Hidden Layer” Guiding Principle – What We Minimally Need

Putting It Into Practice: If we’re going to move our neural network-type architectures into a new, more powerful realm of AI capability, we need to bust out of the “sausage-making” mentality that has governed them thus far, as we discussed last week. To do this, we need to give our hidden layer(s) something to do besides respond to input stimulus. It’s very realistic that this “something” should be free energy minimization, because that’s one of the strongest principles in the…

Read More Read More

Statistical Mechanics, the Future of AI, and Personal Stories

Statistical Mechanics, the Future of AI, and Personal Stories

Statistical Mechanics and Personal Stories (On the Same Page!)   Yikes! It’s Thursday morning already. I haven’t written to you for three weeks. That’s long enough that I have to pause and search my memory for my username to get into the website. Thanksgiving was lovely. The Thursday after that was grading, all day – and for several days before and after. By now, I (and most of you) have had a few days of recovery, from what has been…

Read More Read More

Third Stage Boost: Statistical Mechanics and Neuromorphic Computing – Part 1

Third Stage Boost: Statistical Mechanics and Neuromorphic Computing – Part 1

Next-Generation Neural Network Architectures: More Brain-Like   Three generations of artificial intelligence.. The third generation is emerging … right about … now. That’s what is shown in this figure, presented in log-time scale. Brief history of AI in log-time scale The first generation of AI, symbolic AI, began conceptually around 1954, and lasted until 1986; 32 years. On the log-time scale shown in the figure above, this entire era takes place under the first curve; the black bell-shaped curve on…

Read More Read More

Machine Learning: Multistage Boost Process

Machine Learning: Multistage Boost Process

Three Stages to Orbital Altitude in Machine Learning Several years ago, Regina Dugan (then Director of DARPA) gave a talk in which she showed a clip of epic NASA launch fails. Not just one, but many fails. The theme was that we had to risk failure in order to succeed with innovation. This YouTube vid of rocket launch failures isn’t the exact clip that she showed (the “action” doesn’t kick in for about a minute), but it’s pretty close. For…

Read More Read More

Neg-Log-Sum-Exponent-Neg-Energy – That’s the Easy Part!

Neg-Log-Sum-Exponent-Neg-Energy – That’s the Easy Part!

The Surprising (Hidden) “Gotcha” in This Energy Equation: A couple of days ago, I was doing one of my regular weekly online “Synch” sessions with my Deep Learning students. In a sort of “Beware, here there be dragons!” moment, I showed them this energy equation from the Hinton et al. (2012) Nature review paper on acoustic speech modeling: One of my students pointed out, “That equation looks kind of simple.” Well, he’s right. And I kind of bungled the answer,…

Read More Read More

Seven Essential Machine Learning Equations: A Cribsheet (Really, the Précis)

Seven Essential Machine Learning Equations: A Cribsheet (Really, the Précis)

Making Machine Learning As Simple As Possible Albert Einstein is credited with saying, Everything should be made as simple as possible, but not simpler. Machine learning is not simple. In fact, once you get beyond the simple “building blocks” approach of stacking things higher and deeper (sometimes made all too easy with advanced deep learning packages), you are in the midst of some complex stuff. However, it does not need to be more complex than it has to be.  …

Read More Read More

A Tale of Two Probabilities

A Tale of Two Probabilities

Probabilities: Statistical Mechanics and Bayesian:   Machine learning fuses several different lines of thought, including statistical mechanics, Bayesian probability theory, and neural networks. There are two different ways of thinking about probability in machine learning; one comes from statistical mechanics, and the other from Bayesian logic. Both are important. They are also very different. While these two different ways of thinking about probability are usually very separate, they come together in some of the more advanced machine learning topics, such…

Read More Read More

Labor Day Reading and Academic Year Kick-Off

Labor Day Reading and Academic Year Kick-Off

Deep Learning / Machine Learning Reading and Study Guide:   Several of you have been asking for guided reading lists. This makes sense.   Your Starting Point for Neural Networks, Deep Learning, and Machine Learning   Your study program (reading and code) depends on where you are. Starting out (High-grass country; St. Louis to Alcove Springs): Basic neural networks and deep learning; architecture for common networks, such as CNNs (convolutional neural networks); learning rules and architecture design. Well on the…

Read More Read More

The Statistical Mechanics Underpinnings of Machine Learning

The Statistical Mechanics Underpinnings of Machine Learning

Machine Learning Is Different Now:   Actually, machine learning is a continuation of what it always has been, which is deeply rooted in statistical physics (statistical mechanics). It’s just that there’s a culmination of insights that are now a very substantive body of work, with more theoretical rigor behind them than most of us know.     A Lesson from Mom: It takes a lot of time to learn a new discipline. This is something that I learned from my…

Read More Read More

Seven Statistical Mechanics / Bayesian Equations That You Need to Know

Seven Statistical Mechanics / Bayesian Equations That You Need to Know

Essential Statistical Mechanics for Deep Learning   If you’re self-studying machine learning, and feel that statistical mechanics is suddenly showing up more than it used to, you’re not alone. Within the past couple of years, statistical mechanics (statistical thermodynamics) has become a more integral topic, along with the Kullback-Leibler divergence measure and several inference methods for machine learning, including the expectation maximization (EM) algorithm along with variational Bayes.     Statistical mechanics has always played a strong role in machine…

Read More Read More