Browsed by
Tag: 1-D CVM

The Cluster Variation Method: A Primer for Neuroscientists

The Cluster Variation Method: A Primer for Neuroscientists

Single-Parameter Analytic Solution for Modeling Local Pattern Distributions The cluster variation method (CVM) offers a means for the characterization of both 1-D and 2-D local pattern distributions. The paper referenced at the end of this post provides neuroscientists and BCI researchers with a CVM tutorial that will help them to understand how the CVM statistical thermodynamics formulation can model 1-D and 2-D pattern distributions expressing structural and functional dynamics in the brain. The equilibrium distribution of local patterns, or configuration…

Read More Read More

Analytic Single-Point Solution for Cluster Variation Method Variables (at x1=x2=0.5)

Analytic Single-Point Solution for Cluster Variation Method Variables (at x1=x2=0.5)

Single-Point Analytic Cluster Variation Method Solution: Solving Set of Three Nonlinear, Coupled Equations The Cluster Variation Method, first introduced by Kikuchi in 1951 (“A theory of cooperative phenomena,” Phys. Rev. 81 (6), 988-1003), provides a means for computing the free energy of a system where the entropy term takes into account distributions of particles into local configurations as well as the distribution into “on/off” binary states. As the equations are more complex, numerical solutions for the cluster variation variables are…

Read More Read More