Browsed by
Tag: 2-D CVM

Brain Networks and the Cluster Variation Method: Testing a Scale-Free Model

Brain Networks and the Cluster Variation Method: Testing a Scale-Free Model

Surprising Result Modeling a Simple Scale-Free Brain Network Using the Cluster Variation Method One of the primary research thrusts that I suggested in my recent paper, The Cluster Variation Method: A Primer for Neuroscientists, was that we could use the 2-D Cluster Variation Method (CVM) to model distribution of configuration variables in different brain network topologies. Specifically, I was expecting that the h-value (which measures the interaction enthalpy strength between nodes in a 2-D CVM grid) would change in a…

Read More Read More

Visualizing Variables with the 2-D Cluster Variation Method

Visualizing Variables with the 2-D Cluster Variation Method

Cluster Variation Method – 2-D Case – Configuration Variables, Entropy and Free Energy Following the previous blog on the 1-D Cluster Variation Method, I illustrate here a micro-ensemble for the 2-D Cluster Variation Method, consisting of the original single zigzag chain of only ten units (see previous post), with three additional layers added, as shown in the following Figure 1. In Figure 1, we again have an equilibrium distribution of fraction variables z(i). Note that, as with the 1-D case,…

Read More Read More